Multi-stable mechanism of an oscillating-body wave energy converter

Liang Li, Xiantao Zhang, Zhiming Yuan, Yan Gao

Research output: Contribution to journalArticle

Abstract

The present research aims to utilize the multi-stable mechanism to increase the energy conversion of the oscillating-body wave energy converter (WEC). Considering that a majority of WEC concepts are linear and single-stable, a nonlinear spring-damper model is proposed to achieve the multi-stable mechanism. The system is either monostable or bistable depending on the initial condition of the springs. The energy conversion of a heaving point-absorber with the nonlinear spring-damper model is investigated in the present research. Firstly, a state-space dynamic model of the heaving point-absorber is developed. Then the energy conversion at both the monostable mode and the bistable mode is simulated. The present research also illustrates the response feature at the two stable modes. It is found the nonlinear point-absorber behaves like a linear system in the monostable mode. The energy conversion is just increased slightly. Nevertheless, the energy absorption is increased substantially in the bistable mode. It is found that the velocity phase is adjusted in the bistable mode, leading to the enhancement of the energy conversion.
LanguageEnglish
Number of pages8
JournalIEEE Transactions on Sustainable Energy
Early online date1 Feb 2019
DOIs
Publication statusE-pub ahead of print - 1 Feb 2019

Fingerprint

Energy conversion
Phase velocity
Energy absorption
Linear systems
Dynamic models

Keywords

  • ocean waves
  • wave energy converter
  • power take-off system
  • renewable energy

Cite this

@article{4f43a6a4b2ef4a059b5bcd16cecb15ec,
title = "Multi-stable mechanism of an oscillating-body wave energy converter",
abstract = "The present research aims to utilize the multi-stable mechanism to increase the energy conversion of the oscillating-body wave energy converter (WEC). Considering that a majority of WEC concepts are linear and single-stable, a nonlinear spring-damper model is proposed to achieve the multi-stable mechanism. The system is either monostable or bistable depending on the initial condition of the springs. The energy conversion of a heaving point-absorber with the nonlinear spring-damper model is investigated in the present research. Firstly, a state-space dynamic model of the heaving point-absorber is developed. Then the energy conversion at both the monostable mode and the bistable mode is simulated. The present research also illustrates the response feature at the two stable modes. It is found the nonlinear point-absorber behaves like a linear system in the monostable mode. The energy conversion is just increased slightly. Nevertheless, the energy absorption is increased substantially in the bistable mode. It is found that the velocity phase is adjusted in the bistable mode, leading to the enhancement of the energy conversion.",
keywords = "ocean waves, wave energy converter, power take-off system, renewable energy",
author = "Liang Li and Xiantao Zhang and Zhiming Yuan and Yan Gao",
note = "{\circledC} 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works",
year = "2019",
month = "2",
day = "1",
doi = "10.1109/TSTE.2019.2896991",
language = "English",
journal = "IEEE Transactions on Sustainable Energy",
issn = "1949-3029",

}

TY - JOUR

T1 - Multi-stable mechanism of an oscillating-body wave energy converter

AU - Li, Liang

AU - Zhang, Xiantao

AU - Yuan, Zhiming

AU - Gao, Yan

N1 - © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

PY - 2019/2/1

Y1 - 2019/2/1

N2 - The present research aims to utilize the multi-stable mechanism to increase the energy conversion of the oscillating-body wave energy converter (WEC). Considering that a majority of WEC concepts are linear and single-stable, a nonlinear spring-damper model is proposed to achieve the multi-stable mechanism. The system is either monostable or bistable depending on the initial condition of the springs. The energy conversion of a heaving point-absorber with the nonlinear spring-damper model is investigated in the present research. Firstly, a state-space dynamic model of the heaving point-absorber is developed. Then the energy conversion at both the monostable mode and the bistable mode is simulated. The present research also illustrates the response feature at the two stable modes. It is found the nonlinear point-absorber behaves like a linear system in the monostable mode. The energy conversion is just increased slightly. Nevertheless, the energy absorption is increased substantially in the bistable mode. It is found that the velocity phase is adjusted in the bistable mode, leading to the enhancement of the energy conversion.

AB - The present research aims to utilize the multi-stable mechanism to increase the energy conversion of the oscillating-body wave energy converter (WEC). Considering that a majority of WEC concepts are linear and single-stable, a nonlinear spring-damper model is proposed to achieve the multi-stable mechanism. The system is either monostable or bistable depending on the initial condition of the springs. The energy conversion of a heaving point-absorber with the nonlinear spring-damper model is investigated in the present research. Firstly, a state-space dynamic model of the heaving point-absorber is developed. Then the energy conversion at both the monostable mode and the bistable mode is simulated. The present research also illustrates the response feature at the two stable modes. It is found the nonlinear point-absorber behaves like a linear system in the monostable mode. The energy conversion is just increased slightly. Nevertheless, the energy absorption is increased substantially in the bistable mode. It is found that the velocity phase is adjusted in the bistable mode, leading to the enhancement of the energy conversion.

KW - ocean waves

KW - wave energy converter

KW - power take-off system

KW - renewable energy

U2 - 10.1109/TSTE.2019.2896991

DO - 10.1109/TSTE.2019.2896991

M3 - Article

JO - IEEE Transactions on Sustainable Energy

T2 - IEEE Transactions on Sustainable Energy

JF - IEEE Transactions on Sustainable Energy

SN - 1949-3029

ER -