Multi-physics simulation of friction stir welding process

Research output: Contribution to journalArticle

31 Citations (Scopus)
769 Downloads (Pure)

Abstract

The Friction Stir Welding (FSW) process comprises of several highly coupled (and non-linear) physical phenomena: large plastic deformation, material flow transportation, mechanical stirring of the tool, tool-workpiece surface interaction, dynamic structural evolution, heat generation from friction and plastic deformation, etc. In this paper, an advanced Finite Element (FE) model encapsulating this complex behavior is presented and various aspects
associated with the FE model such as contact modeling, material model and meshing techniques are discussed in detail. The numerical model is continuum solid mechanics-based, fully thermomechanically coupled and has successfully simulated the friction stir welding process including plunging, dwelling and welding stages. The development of several field variables are quantified by the model: temperature, stress, strain, etc. Material movement is visualized by defining tracer particles at the locations of interest. The numerically computed material flow patterns are in very good agreement with the general findings from experiments. The model is, to the best of the authors’ knowledge, the most advanced simulation of FSW published in the literature.
Original languageEnglish
Pages (from-to)967-985
Number of pages19
JournalEngineering Computations
Volume27
Issue number8
DOIs
Publication statusPublished - Dec 2010

    Fingerprint

Keywords

  • friction stir welding (FSW)
  • multi-physics
  • numerical simulation

Cite this