Motor differences identify children with autism engaged in iPad gameplay

Ania Anzulewicz, Krzysiek Sobota, Maria Ferrara, Jonathon T. Delafield-Butt

Research output: Contribution to conferencePosterpeer-review

178 Downloads (Pure)


Autism is a developmental disorder evident from infancy. Yet, its clinical identification is often not possible until after the third year of life. New evidence indicates disruption to motor timing and integration may underpin the disorder, providing a potential new marker for its early identification. We employed smart tablet computers with touch-sensitive screens and embedded inertial movement sensors to record the movement kinematics and gesture forces made by 37 children 3-6 years old with autism and 45 age- and gender-matched children developing typically. Machine learning analysis of the children’s motor patterns identified autism with 93% accuracy. Analysis revealed these patterns consisted of greater forces at contact and with a different distribution of forces within a gesture, and gesture kinematics were faster and larger, with more distal use of space. These data support the notion disruption to movement is core feature of autism, and demonstrate autism can be assessed by smart device gameplay.
Original languageEnglish
Publication statusPublished - 11 May 2016
EventInternational Meeting for Autism Research - Baltimore Convention Center, Baltimore, United States
Duration: 11 May 201614 May 2016


ConferenceInternational Meeting for Autism Research
Country/TerritoryUnited States
Internet address


  • autism spectrum disorder
  • mobile devices
  • motor differences
  • intentional movements
  • prospective planning
  • execution of movements
  • movement patterns
  • finger swipe kinematics


Dive into the research topics of 'Motor differences identify children with autism engaged in iPad gameplay'. Together they form a unique fingerprint.

Cite this