Morphological development of Aspergillus niger in submerged citric acid fermentation as a function of the spore inoculum level. Application of neural network and cluster analysis for characterization of mycelial morphology

Maria Papagianni, Michael Mattey

Research output: Contribution to journalArticle

66 Citations (Scopus)

Abstract

Although the citric acid fermentation by Aspergillus niger is one of the most important industrial microbial processes and various aspects of the fermentation appear in a very large number of publications since the 1950s, the effect of the spore inoculum level on fungal morphology is a rather neglected area. The aim of the presented investigations was to quantify the effects of changing spore inoculum level on the resulting mycelial morphology and to investigate the physiology that underlines the phenomena. Batch fermentations were carried out in a stirred tank bioreactor, which were inoculated directly with spores in concentrations ranging from 104 to 109 spores per ml. Morphological features, evaluated by digital image analysis, were classified using an artificial neural network (ANN), which considered four main object types: globular and elongated pellets, clumps and free mycelial trees. The significance of the particular morphological features and their combination was determined by cluster analysis. Cell volume fraction analysis for the various inoculum levels tested revealed that by rising the spore inoculum level from 104 to 109 spores per ml, a clear transition from pelleted to dispersed forms occurs. Glucosamine formation and release by the mycelium appears to be related to spore inoculum level. Maximum concentrations detected in fermentations inoculated with 104 and 105 spores/ml, where pellets predominated. At much higher inoculum levels (108, 109 spores/ml), lower dissolved oxygen levels during the early fermentation phase were associated with slower ammonium ions uptakes and significantly lower glucosamine concentrations while the mycelium developed in dispersed morphologies. A big increase in the main and total hyphal lengths and branching frequency was observed in mycelial trees as inoculum levels rise from 104 to 109 spores/ml, while in aggregated forms particle sizes and their compactness decreased
LanguageEnglish
JournalMicrobial Cell Factories
Volume5
Issue number3
DOIs
Publication statusPublished - 25 Jan 2006

Fingerprint

Aspergillus niger
Aspergillus
Citric acid
Cluster analysis
Electric network analysis
Spores
Citric Acid
Fermentation
Cluster Analysis
Neural networks
Glucosamine
Mycelium
Physiology
Dissolved oxygen
Bioreactors
Ammonium Compounds
Image analysis
Volume fraction
Particle size
Ions

Keywords

  • neural networks
  • cluster analysis
  • bioscience
  • mycelial morphology

Cite this

@article{71e5bf09dfdd45fc87b833e50635e360,
title = "Morphological development of Aspergillus niger in submerged citric acid fermentation as a function of the spore inoculum level. Application of neural network and cluster analysis for characterization of mycelial morphology",
abstract = "Although the citric acid fermentation by Aspergillus niger is one of the most important industrial microbial processes and various aspects of the fermentation appear in a very large number of publications since the 1950s, the effect of the spore inoculum level on fungal morphology is a rather neglected area. The aim of the presented investigations was to quantify the effects of changing spore inoculum level on the resulting mycelial morphology and to investigate the physiology that underlines the phenomena. Batch fermentations were carried out in a stirred tank bioreactor, which were inoculated directly with spores in concentrations ranging from 104 to 109 spores per ml. Morphological features, evaluated by digital image analysis, were classified using an artificial neural network (ANN), which considered four main object types: globular and elongated pellets, clumps and free mycelial trees. The significance of the particular morphological features and their combination was determined by cluster analysis. Cell volume fraction analysis for the various inoculum levels tested revealed that by rising the spore inoculum level from 104 to 109 spores per ml, a clear transition from pelleted to dispersed forms occurs. Glucosamine formation and release by the mycelium appears to be related to spore inoculum level. Maximum concentrations detected in fermentations inoculated with 104 and 105 spores/ml, where pellets predominated. At much higher inoculum levels (108, 109 spores/ml), lower dissolved oxygen levels during the early fermentation phase were associated with slower ammonium ions uptakes and significantly lower glucosamine concentrations while the mycelium developed in dispersed morphologies. A big increase in the main and total hyphal lengths and branching frequency was observed in mycelial trees as inoculum levels rise from 104 to 109 spores/ml, while in aggregated forms particle sizes and their compactness decreased",
keywords = "neural networks, cluster analysis, bioscience, mycelial morphology",
author = "Maria Papagianni and Michael Mattey",
year = "2006",
month = "1",
day = "25",
doi = "10.1186/1475-2859-5-3",
language = "English",
volume = "5",
journal = "Microbial Cell Factories",
issn = "1475-2859",
number = "3",

}

TY - JOUR

T1 - Morphological development of Aspergillus niger in submerged citric acid fermentation as a function of the spore inoculum level. Application of neural network and cluster analysis for characterization of mycelial morphology

AU - Papagianni, Maria

AU - Mattey, Michael

PY - 2006/1/25

Y1 - 2006/1/25

N2 - Although the citric acid fermentation by Aspergillus niger is one of the most important industrial microbial processes and various aspects of the fermentation appear in a very large number of publications since the 1950s, the effect of the spore inoculum level on fungal morphology is a rather neglected area. The aim of the presented investigations was to quantify the effects of changing spore inoculum level on the resulting mycelial morphology and to investigate the physiology that underlines the phenomena. Batch fermentations were carried out in a stirred tank bioreactor, which were inoculated directly with spores in concentrations ranging from 104 to 109 spores per ml. Morphological features, evaluated by digital image analysis, were classified using an artificial neural network (ANN), which considered four main object types: globular and elongated pellets, clumps and free mycelial trees. The significance of the particular morphological features and their combination was determined by cluster analysis. Cell volume fraction analysis for the various inoculum levels tested revealed that by rising the spore inoculum level from 104 to 109 spores per ml, a clear transition from pelleted to dispersed forms occurs. Glucosamine formation and release by the mycelium appears to be related to spore inoculum level. Maximum concentrations detected in fermentations inoculated with 104 and 105 spores/ml, where pellets predominated. At much higher inoculum levels (108, 109 spores/ml), lower dissolved oxygen levels during the early fermentation phase were associated with slower ammonium ions uptakes and significantly lower glucosamine concentrations while the mycelium developed in dispersed morphologies. A big increase in the main and total hyphal lengths and branching frequency was observed in mycelial trees as inoculum levels rise from 104 to 109 spores/ml, while in aggregated forms particle sizes and their compactness decreased

AB - Although the citric acid fermentation by Aspergillus niger is one of the most important industrial microbial processes and various aspects of the fermentation appear in a very large number of publications since the 1950s, the effect of the spore inoculum level on fungal morphology is a rather neglected area. The aim of the presented investigations was to quantify the effects of changing spore inoculum level on the resulting mycelial morphology and to investigate the physiology that underlines the phenomena. Batch fermentations were carried out in a stirred tank bioreactor, which were inoculated directly with spores in concentrations ranging from 104 to 109 spores per ml. Morphological features, evaluated by digital image analysis, were classified using an artificial neural network (ANN), which considered four main object types: globular and elongated pellets, clumps and free mycelial trees. The significance of the particular morphological features and their combination was determined by cluster analysis. Cell volume fraction analysis for the various inoculum levels tested revealed that by rising the spore inoculum level from 104 to 109 spores per ml, a clear transition from pelleted to dispersed forms occurs. Glucosamine formation and release by the mycelium appears to be related to spore inoculum level. Maximum concentrations detected in fermentations inoculated with 104 and 105 spores/ml, where pellets predominated. At much higher inoculum levels (108, 109 spores/ml), lower dissolved oxygen levels during the early fermentation phase were associated with slower ammonium ions uptakes and significantly lower glucosamine concentrations while the mycelium developed in dispersed morphologies. A big increase in the main and total hyphal lengths and branching frequency was observed in mycelial trees as inoculum levels rise from 104 to 109 spores/ml, while in aggregated forms particle sizes and their compactness decreased

KW - neural networks

KW - cluster analysis

KW - bioscience

KW - mycelial morphology

UR - http://dx.doi.org/10.1186/1475-2859-5-3

U2 - 10.1186/1475-2859-5-3

DO - 10.1186/1475-2859-5-3

M3 - Article

VL - 5

JO - Microbial Cell Factories

T2 - Microbial Cell Factories

JF - Microbial Cell Factories

SN - 1475-2859

IS - 3

ER -