TY - JOUR
T1 - Molecular tilt on monolayer-protected nanoparticles.
AU - Giomi, L
AU - Bowick, M J
AU - Ma, X.
AU - Majumdar, A.
N1 - [1] M.-C. Daniel and D. Astruc, Chem. Rev. 104, 293 (2004).
[2] J. C. Love, L. A. Estro, J. K. Kriebel, R. G. Nuzzo,
and G. M. Whitesides, Chem. Rev. 105, 1103 (2005).
[3] R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B.
Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney,
and R. G. Osifchin, Science 273, 1690 (1996).
[4] C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs,
and J. R. Heath, Science 277, 1978 (1997).
[5] G. Han, P. Ghosh, and V. M. Rotello, Nanomedicine 2,
113 (2007).
[6] L. Pasquato, P. Pengo, and P. Scrimin, Supramol. Chem.
17, 163 (2004).
[7] D. G. Georganopoulou, L. Chang, J. M. Naam, C. S.
Thaxton, E. J. Mufson, W. L. Klein, and C. A. Markin,
Proc. Natl. Acad. Sci. U.S.A. 102, 2273 (2005).
[8] H. Ditlbacher, J. Krenn, G. Schider, A. Leitner, and
F. Aussenberg, Appl. Phys. Lett. 81, 1762 (2002).
[9] R. MacFarlane, B. Lee, M. Jones, N. Harris, G. Schatz,
and C. Mirkin, Science 334, 204 (2011).
[10] O. Salata, J. Nanobiotechnology 2, 3 (2004).
[11] W. D. Luedtke and U. Landman, J. Phys. Chem. B 102,
6566 (1998).
[12] D. Zanchet, B. D. Hall, and D. J. Ugarte, Phys. Chem.
B 104, 11013 (2000).
[13] U. Landman and W. D. Luedtke, Faraday Discuss. 125,
1 (2004).
[14] P. K. Ghorai and S. Glotzer, J. Phys. Chem. C 111,
15857 (2007).
[15] M. Eisenberg and R. Guy, Am. Math. Mon. 86, 571
(1979).
[16] M. J. Bowick and L. Giomi, Adv. Phys. 58, 449 (2009).
[17] A. M. Turner, V. Vitelli, and D. R. Nelson, Rev. Mod.
Phys. 82, 1301 (2010).
[18] D. R. Nelson, Nano Lett. 2, 1125 (2002).
[19] G. A. DeVries, M. Brunnbauer, Y. Hu, A. M. Jackson,
B. Long, B. T. Neltner, O. Uzun, B. H. Wunsch, and
F. Stellacci, Science 315, 358 (2007).
[20] S. Rapino and F. Zerbetto, Small 3, 386 (2007).
[21] F. C. MacKintosh and T. C. Lubensky, Phys. Rev. Lett.
67, 1169 (1991).
[22] D. A. Outka, J. Stohr, J. Rabe, J. D. Swalen, and H. H.
Rotermund, Phys. Rev. Lett. 59, 1321 (1987).
[23] H. Sellers, A. Ulman, Y. Shnidman, and J. E. Eilers, J.
Am. Chem. Soc. 115, 9389 (1993).
[24] M. D. Porter, T. B. Bright, D. L. Allara, and C. E. D.
Chidsey, J. Am. Chem. Soc. 109, 3559 (1987).
[25] R. G. Nuzzo, L. H. Dubois, and D. L. Allara, J. Am.
Chem. Soc. 112, 558 (1990).
[26] T. T. Ehler, N. Malmberg, and L. J. Noe, J. Phys. Chem.
B 101, 1268 (1997).
[27] M. Tinkham, Introduction to Superconductivity
(McGraw-Hill, New York, 1996).
[28] G. A. DeVries, F. R. Talley, R. P. Carney, and F. Stellacci,
Adv. Mater. 20, 4243 (2008).
PY - 2012/2/6
Y1 - 2012/2/6
N2 - The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio epsilon between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small epsilon, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small epsilon characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials.
AB - The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio epsilon between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small epsilon, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small epsilon characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials.
KW - monolayer-protected nanoparticles
KW - Ginzburg-Landau model
KW - tilt angles
U2 - 10.1209/0295-5075/97/36005
DO - 10.1209/0295-5075/97/36005
M3 - Article
VL - 97
JO - EPL (Europhysics Letters)
JF - EPL (Europhysics Letters)
IS - 3
ER -