Modelling the formation of porous organic gels-how structural properties depend on growth conditions

Research output: Contribution to journalArticle

Abstract

There has been significant research interest invested into the study of the formation and properties of porous organic materials, due to their widespread applications. However, present models in the literature do not fully explain the observations made for these systems, therefore, this work presents a model developed to fully capture growth from the monomeric species present in the initial stages of the gelation composition. In this work, we employ a two-dimensional lattice-based kinetic Monte Carlo model to investigate how growth processes impact the structural properties of model gels. Experimentally, gel growth is primarily controlled through catalyst concentration, which determines the density of species that are activated for rapid growth, and solids concentration; our model captures both of these dependencies. Increasing both solids content and percentage of activated monomers leads to a higher ratio of closed porosity, and higher values of accessible surface area with increasing level of activation. The generated structures are analysed for their fractal properties using a correlation dimension. Increasing both solids content and percentage of activated species leads to an increase in correlation dimension, which plateaus at a value of 2, independent of catalyst concentration, suggesting little structural change at high solid loadings, over 50%. The Hurst exponent of a random walker diffusing in the accessible pores shows the opposite trend, varying from 1/2 for unconstrained diffusion and reducing to 1/3; for diffusion through the pore network at the threshold of percolation. These characteristics support visual observations of increasing complexity and tortuosity of pore structures in the model cluster structures. The implications of these results, for the design of porous structures tailored to particular applications, are discussed.

Original languageEnglish
Pages (from-to)20065-20074
Number of pages10
JournalRSC Advances
Volume9
Issue number35
DOIs
Publication statusPublished - 27 Jun 2019

Fingerprint

Structural properties
Gels
Catalysts
Gelation
Pore structure
Fractals
Porosity
Monomers
Chemical activation
Kinetics
Chemical analysis

Keywords

  • porous organic materials
  • gelation composition
  • gel growth
  • catalyst concentration
  • pore structures

Cite this

@article{8d126f5e90fa4ff8bdee448cd5c7ed82,
title = "Modelling the formation of porous organic gels-how structural properties depend on growth conditions",
abstract = "There has been significant research interest invested into the study of the formation and properties of porous organic materials, due to their widespread applications. However, present models in the literature do not fully explain the observations made for these systems, therefore, this work presents a model developed to fully capture growth from the monomeric species present in the initial stages of the gelation composition. In this work, we employ a two-dimensional lattice-based kinetic Monte Carlo model to investigate how growth processes impact the structural properties of model gels. Experimentally, gel growth is primarily controlled through catalyst concentration, which determines the density of species that are activated for rapid growth, and solids concentration; our model captures both of these dependencies. Increasing both solids content and percentage of activated monomers leads to a higher ratio of closed porosity, and higher values of accessible surface area with increasing level of activation. The generated structures are analysed for their fractal properties using a correlation dimension. Increasing both solids content and percentage of activated species leads to an increase in correlation dimension, which plateaus at a value of 2, independent of catalyst concentration, suggesting little structural change at high solid loadings, over 50{\%}. The Hurst exponent of a random walker diffusing in the accessible pores shows the opposite trend, varying from 1/2 for unconstrained diffusion and reducing to 1/3; for diffusion through the pore network at the threshold of percolation. These characteristics support visual observations of increasing complexity and tortuosity of pore structures in the model cluster structures. The implications of these results, for the design of porous structures tailored to particular applications, are discussed.",
keywords = "porous organic materials, gelation composition, gel growth, catalyst concentration, pore structures",
author = "Martin Prostredny and Ashleigh Fletcher and Paul Mulheran",
year = "2019",
month = "6",
day = "27",
doi = "10.1039/c9ra01979k",
language = "English",
volume = "9",
pages = "20065--20074",
journal = "RSC Advances",
issn = "2046-2069",
number = "35",

}

TY - JOUR

T1 - Modelling the formation of porous organic gels-how structural properties depend on growth conditions

AU - Prostredny, Martin

AU - Fletcher, Ashleigh

AU - Mulheran, Paul

PY - 2019/6/27

Y1 - 2019/6/27

N2 - There has been significant research interest invested into the study of the formation and properties of porous organic materials, due to their widespread applications. However, present models in the literature do not fully explain the observations made for these systems, therefore, this work presents a model developed to fully capture growth from the monomeric species present in the initial stages of the gelation composition. In this work, we employ a two-dimensional lattice-based kinetic Monte Carlo model to investigate how growth processes impact the structural properties of model gels. Experimentally, gel growth is primarily controlled through catalyst concentration, which determines the density of species that are activated for rapid growth, and solids concentration; our model captures both of these dependencies. Increasing both solids content and percentage of activated monomers leads to a higher ratio of closed porosity, and higher values of accessible surface area with increasing level of activation. The generated structures are analysed for their fractal properties using a correlation dimension. Increasing both solids content and percentage of activated species leads to an increase in correlation dimension, which plateaus at a value of 2, independent of catalyst concentration, suggesting little structural change at high solid loadings, over 50%. The Hurst exponent of a random walker diffusing in the accessible pores shows the opposite trend, varying from 1/2 for unconstrained diffusion and reducing to 1/3; for diffusion through the pore network at the threshold of percolation. These characteristics support visual observations of increasing complexity and tortuosity of pore structures in the model cluster structures. The implications of these results, for the design of porous structures tailored to particular applications, are discussed.

AB - There has been significant research interest invested into the study of the formation and properties of porous organic materials, due to their widespread applications. However, present models in the literature do not fully explain the observations made for these systems, therefore, this work presents a model developed to fully capture growth from the monomeric species present in the initial stages of the gelation composition. In this work, we employ a two-dimensional lattice-based kinetic Monte Carlo model to investigate how growth processes impact the structural properties of model gels. Experimentally, gel growth is primarily controlled through catalyst concentration, which determines the density of species that are activated for rapid growth, and solids concentration; our model captures both of these dependencies. Increasing both solids content and percentage of activated monomers leads to a higher ratio of closed porosity, and higher values of accessible surface area with increasing level of activation. The generated structures are analysed for their fractal properties using a correlation dimension. Increasing both solids content and percentage of activated species leads to an increase in correlation dimension, which plateaus at a value of 2, independent of catalyst concentration, suggesting little structural change at high solid loadings, over 50%. The Hurst exponent of a random walker diffusing in the accessible pores shows the opposite trend, varying from 1/2 for unconstrained diffusion and reducing to 1/3; for diffusion through the pore network at the threshold of percolation. These characteristics support visual observations of increasing complexity and tortuosity of pore structures in the model cluster structures. The implications of these results, for the design of porous structures tailored to particular applications, are discussed.

KW - porous organic materials

KW - gelation composition

KW - gel growth

KW - catalyst concentration

KW - pore structures

U2 - 10.1039/c9ra01979k

DO - 10.1039/c9ra01979k

M3 - Article

VL - 9

SP - 20065

EP - 20074

JO - RSC Advances

JF - RSC Advances

SN - 2046-2069

IS - 35

ER -