TY - JOUR
T1 - Modelling tempering behaviour of dark chocolates from varying particle size distribution and fat content using response surface methodology
AU - Afoakwa, Emmanuel Ohene
AU - Paterson, A.
AU - Fowler, Mark
AU - Vieira, Joselio
PY - 2008
Y1 - 2008
N2 - Central Composite Rotatable Design (CCRD) for K = 2 was used to study the combined effects of multi-stage heat exchangers for Stages 1 (14-30 °C) and 2 (12-28 °C) coolant temperatures at constant Stage 3 coolant and holding temperatures during tempering of dark chocolates using laboratory-scale mini-temperer. Quantitative data on chocolate temper index (slope) were obtained for products with varying particle size distribution (PSD) (D90 of 18, 25, 35 and 50 μm) and fat (30% and 35%) content. Regression models generated using stepwise regression analyses were used to plot response surface curves, to study the tempering behaviour of products. The results showed that both Stage 1 and Stage 2 coolant temperatures had significant linear and quadratic effects on the crystallization behaviour causing wide variations in chocolate temper index during tempering of products with variable PSD and fat content. Differences in fat content exerted the greatest variability in temperature settings of the different zones for attaining well-tempered products. At 35% fat content, changes in PSD caused only slight and insignificant effect on tempering behaviour. No unique set of conditions was found to achieve good temper in dark chocolate with a specified tempering unit. Thus, different combinations of temperatures could be employed between the multi-stage heat exchangers to induce nucleation and growth of stable fat crystal polymorphs during tempering. Variations in tempering outcomes of the dark chocolates were dependent more on the fat content than PSD.
AB - Central Composite Rotatable Design (CCRD) for K = 2 was used to study the combined effects of multi-stage heat exchangers for Stages 1 (14-30 °C) and 2 (12-28 °C) coolant temperatures at constant Stage 3 coolant and holding temperatures during tempering of dark chocolates using laboratory-scale mini-temperer. Quantitative data on chocolate temper index (slope) were obtained for products with varying particle size distribution (PSD) (D90 of 18, 25, 35 and 50 μm) and fat (30% and 35%) content. Regression models generated using stepwise regression analyses were used to plot response surface curves, to study the tempering behaviour of products. The results showed that both Stage 1 and Stage 2 coolant temperatures had significant linear and quadratic effects on the crystallization behaviour causing wide variations in chocolate temper index during tempering of products with variable PSD and fat content. Differences in fat content exerted the greatest variability in temperature settings of the different zones for attaining well-tempered products. At 35% fat content, changes in PSD caused only slight and insignificant effect on tempering behaviour. No unique set of conditions was found to achieve good temper in dark chocolate with a specified tempering unit. Thus, different combinations of temperatures could be employed between the multi-stage heat exchangers to induce nucleation and growth of stable fat crystal polymorphs during tempering. Variations in tempering outcomes of the dark chocolates were dependent more on the fat content than PSD.
KW - chocolate
KW - tempering
KW - fat crystallization
KW - particle size distribution
KW - response surface methodology
UR - http://www.elsevier.com/wps/find/journaldescription.cws_home/620381/description#description
UR - http://dx.doi.org/10.1016/j.ifset.2008.02.002
U2 - 10.1016/j.ifset.2008.02.002
DO - 10.1016/j.ifset.2008.02.002
M3 - Article
SN - 1466-8564
VL - 9
SP - 527
EP - 533
JO - Innovative Food Science and Emerging Technologies
JF - Innovative Food Science and Emerging Technologies
IS - 4
ER -