Modelling of measured tungsten spectra from ASDEX upgrade and predictions for ITER

T. Putterich, R. Neu, R. Dux, A.D. Whiteford, M.G. O'Mullane

Research output: Contribution to journalArticle

204 Citations (Scopus)

Abstract

Tungsten (W) has moved into the focus of fusion research being a main candidate for the plasma facing components (PFCs) of ITER and a future fusion reactor. A main ingredient for understanding the influence of W as a plasma impurity and its impact on the plasma is the spatially resolved spectroscopic diagnosis of W. The focus of the experimental investigations at ASDEX Upgrade is on the most intense emissions of W ions (about I-like W21+ to Mn-like W49+) in the VUV to the soft x-ray region covering the electron temperature range from about 0.5-5.0 keV. The relative shape of the fractional abundances of the ionization stages Se-like W40+ to Ni-like W46+ and of the bundle of ionization stages between Sn-like W24+ and Y-like W35+ was determined. Calculated fractional abundances using published ionization and recombination rates do not accurately describe the experimental temperature dependence. Adjustments to the recombination rates were calculated to reconcile with the measurements. The spectral features of W at 0.4-0.8 nm, around 5 nm, between 12 and 14 nm and between 10 and 30 nm have been recorded and compared with modelling results. The quality of agreement is best for highly charged ionization stages and short wavelengths and decreases for lower charged ionization stages and longer wavelengths. However, in the latter case the predictions manage to reproduce the total emissivity in each considered spectral range and also the rough distribution of emissions versus wavelengths within these spectral ranges. The modelling of the SXR range at 0.4-0.8 nm looks very similar to the measurement. Further observations of weaker spectral features between 0.6 and 0.7 nm, between 1.8 and 3.5 nm and at 8 nm could be attributed to certain ionization stages. The modelling of W spectra for ITER predicts emissions of Cr-like W50+ to about C-like W68+ at 0.1-0.15 nm, 1.8-4.0 nm and around 8 nm.
LanguageEnglish
Article number085016
Number of pages28
JournalPlasma Physics and Controlled Fusion
Volume50
Issue number8
DOIs
Publication statusPublished - Aug 2008

Fingerprint

Ionization
Tungsten
tungsten
ionization
predictions
Plasmas
Wavelength
wavelengths
fusion reactors
Electron temperature
Fusion reactors
emissivity
ingredients
bundles
coverings
Fusion reactions
fusion
adjusting
Impurities
electron energy

Keywords

  • fusion research
  • tungsten
  • plasma facing components
  • fusion reactor
  • highly ionized tungsten
  • electron-impact excitation
  • tokamak plasma
  • neoclassical transport
  • impurity transport
  • region
  • ions
  • discharges
  • radiation
  • divertor

Cite this

@article{d497a21870eb47739a3ebc8c8cc5443c,
title = "Modelling of measured tungsten spectra from ASDEX upgrade and predictions for ITER",
abstract = "Tungsten (W) has moved into the focus of fusion research being a main candidate for the plasma facing components (PFCs) of ITER and a future fusion reactor. A main ingredient for understanding the influence of W as a plasma impurity and its impact on the plasma is the spatially resolved spectroscopic diagnosis of W. The focus of the experimental investigations at ASDEX Upgrade is on the most intense emissions of W ions (about I-like W21+ to Mn-like W49+) in the VUV to the soft x-ray region covering the electron temperature range from about 0.5-5.0 keV. The relative shape of the fractional abundances of the ionization stages Se-like W40+ to Ni-like W46+ and of the bundle of ionization stages between Sn-like W24+ and Y-like W35+ was determined. Calculated fractional abundances using published ionization and recombination rates do not accurately describe the experimental temperature dependence. Adjustments to the recombination rates were calculated to reconcile with the measurements. The spectral features of W at 0.4-0.8 nm, around 5 nm, between 12 and 14 nm and between 10 and 30 nm have been recorded and compared with modelling results. The quality of agreement is best for highly charged ionization stages and short wavelengths and decreases for lower charged ionization stages and longer wavelengths. However, in the latter case the predictions manage to reproduce the total emissivity in each considered spectral range and also the rough distribution of emissions versus wavelengths within these spectral ranges. The modelling of the SXR range at 0.4-0.8 nm looks very similar to the measurement. Further observations of weaker spectral features between 0.6 and 0.7 nm, between 1.8 and 3.5 nm and at 8 nm could be attributed to certain ionization stages. The modelling of W spectra for ITER predicts emissions of Cr-like W50+ to about C-like W68+ at 0.1-0.15 nm, 1.8-4.0 nm and around 8 nm.",
keywords = "fusion research, tungsten, plasma facing components, fusion reactor, highly ionized tungsten, electron-impact excitation, tokamak plasma, neoclassical transport, impurity transport, region, ions, discharges, radiation, divertor",
author = "T. Putterich and R. Neu and R. Dux and A.D. Whiteford and M.G. O'Mullane",
year = "2008",
month = "8",
doi = "10.1088/0741-3335/50/8/085016",
language = "English",
volume = "50",
journal = "Plasma Physics and Controlled Fusion",
issn = "0741-3335",
number = "8",

}

Modelling of measured tungsten spectra from ASDEX upgrade and predictions for ITER. / Putterich, T.; Neu, R.; Dux, R.; Whiteford, A.D.; O'Mullane, M.G.

In: Plasma Physics and Controlled Fusion, Vol. 50, No. 8, 085016, 08.2008.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Modelling of measured tungsten spectra from ASDEX upgrade and predictions for ITER

AU - Putterich, T.

AU - Neu, R.

AU - Dux, R.

AU - Whiteford, A.D.

AU - O'Mullane, M.G.

PY - 2008/8

Y1 - 2008/8

N2 - Tungsten (W) has moved into the focus of fusion research being a main candidate for the plasma facing components (PFCs) of ITER and a future fusion reactor. A main ingredient for understanding the influence of W as a plasma impurity and its impact on the plasma is the spatially resolved spectroscopic diagnosis of W. The focus of the experimental investigations at ASDEX Upgrade is on the most intense emissions of W ions (about I-like W21+ to Mn-like W49+) in the VUV to the soft x-ray region covering the electron temperature range from about 0.5-5.0 keV. The relative shape of the fractional abundances of the ionization stages Se-like W40+ to Ni-like W46+ and of the bundle of ionization stages between Sn-like W24+ and Y-like W35+ was determined. Calculated fractional abundances using published ionization and recombination rates do not accurately describe the experimental temperature dependence. Adjustments to the recombination rates were calculated to reconcile with the measurements. The spectral features of W at 0.4-0.8 nm, around 5 nm, between 12 and 14 nm and between 10 and 30 nm have been recorded and compared with modelling results. The quality of agreement is best for highly charged ionization stages and short wavelengths and decreases for lower charged ionization stages and longer wavelengths. However, in the latter case the predictions manage to reproduce the total emissivity in each considered spectral range and also the rough distribution of emissions versus wavelengths within these spectral ranges. The modelling of the SXR range at 0.4-0.8 nm looks very similar to the measurement. Further observations of weaker spectral features between 0.6 and 0.7 nm, between 1.8 and 3.5 nm and at 8 nm could be attributed to certain ionization stages. The modelling of W spectra for ITER predicts emissions of Cr-like W50+ to about C-like W68+ at 0.1-0.15 nm, 1.8-4.0 nm and around 8 nm.

AB - Tungsten (W) has moved into the focus of fusion research being a main candidate for the plasma facing components (PFCs) of ITER and a future fusion reactor. A main ingredient for understanding the influence of W as a plasma impurity and its impact on the plasma is the spatially resolved spectroscopic diagnosis of W. The focus of the experimental investigations at ASDEX Upgrade is on the most intense emissions of W ions (about I-like W21+ to Mn-like W49+) in the VUV to the soft x-ray region covering the electron temperature range from about 0.5-5.0 keV. The relative shape of the fractional abundances of the ionization stages Se-like W40+ to Ni-like W46+ and of the bundle of ionization stages between Sn-like W24+ and Y-like W35+ was determined. Calculated fractional abundances using published ionization and recombination rates do not accurately describe the experimental temperature dependence. Adjustments to the recombination rates were calculated to reconcile with the measurements. The spectral features of W at 0.4-0.8 nm, around 5 nm, between 12 and 14 nm and between 10 and 30 nm have been recorded and compared with modelling results. The quality of agreement is best for highly charged ionization stages and short wavelengths and decreases for lower charged ionization stages and longer wavelengths. However, in the latter case the predictions manage to reproduce the total emissivity in each considered spectral range and also the rough distribution of emissions versus wavelengths within these spectral ranges. The modelling of the SXR range at 0.4-0.8 nm looks very similar to the measurement. Further observations of weaker spectral features between 0.6 and 0.7 nm, between 1.8 and 3.5 nm and at 8 nm could be attributed to certain ionization stages. The modelling of W spectra for ITER predicts emissions of Cr-like W50+ to about C-like W68+ at 0.1-0.15 nm, 1.8-4.0 nm and around 8 nm.

KW - fusion research

KW - tungsten

KW - plasma facing components

KW - fusion reactor

KW - highly ionized tungsten

KW - electron-impact excitation

KW - tokamak plasma

KW - neoclassical transport

KW - impurity transport

KW - region

KW - ions

KW - discharges

KW - radiation

KW - divertor

U2 - 10.1088/0741-3335/50/8/085016

DO - 10.1088/0741-3335/50/8/085016

M3 - Article

VL - 50

JO - Plasma Physics and Controlled Fusion

T2 - Plasma Physics and Controlled Fusion

JF - Plasma Physics and Controlled Fusion

SN - 0741-3335

IS - 8

M1 - 085016

ER -