Modelling epistemic uncertainty in IR evaluation

M. Yakici, M. Baillie, I. Ruthven, F. Crestani

Research output: Contribution to conferencePaperpeer-review

Abstract

Modern information retrieval (IR) test collections violate the completeness assumption of the Cranfield paradigm. In order to maximise the available resources, only a sample of documents (i.e. the pool) are judged for relevance by a human assessor(s). The subsequent evaluation protocol does not make any distinctions between assessed or unassessed documents, as documents that are not in the pool are assumed to be not relevant for the topic. This is beneficial from a practical point of view, as the relative performance can be compared with confidence if the experimental conditions are fair for all systems. However, given the incompleteness of relevance assessments, two forms of uncertainty emerge during evaluation. The first is Aleatory uncertainty, which refers to variation in system performance across the topic set, which is often addressed through the use of statistical significance tests. The second form of uncertainty is Epistemic, which refers to the amount of knowledge (or ignorance) we have about the estimate of a system's performance.
Original languageEnglish
Number of pages2
Publication statusUnpublished - Jul 2007
EventProceedings of the 30th Annual International ACM SIGIR Conference on Research and Development on Information Retrieval (SIGIR 07) - Amsterdam, Netherlands
Duration: 23 Jul 200727 Jul 2007

Conference

ConferenceProceedings of the 30th Annual International ACM SIGIR Conference on Research and Development on Information Retrieval (SIGIR 07)
CityAmsterdam, Netherlands
Period23/07/0727/07/07

Keywords

  • systems
  • software performance
  • evaluation
  • performance evaluation
  • metrics
  • uncertainty
  • information retrieval

Fingerprint

Dive into the research topics of 'Modelling epistemic uncertainty in IR evaluation'. Together they form a unique fingerprint.

Cite this