Model updating strategy of the DLR-AIRMOD test structure

Edoardo Patelli, Matteo Broggi, Yves Govers, John E. Mottershead

Research output: Contribution to journalArticle

2 Citations (Scopus)


Considerable progresses have been made in computer-aided engineering for the high fidelity analysis of structures and systems. Traditionally, computer models are calibrated using deterministic procedures. However, different analysts produce different models based on different modelling approximations and assumptions. In addition, identically constructed structures and systems show different characteristic between each other. Hence, model updating needs to take account modelling and test-data variability.
Stochastic model updating techniques such as sensitivity approach and Bayesian updating are now recognised as powerful approaches able to deal with unavoidable uncertainty and variability. This paper presents a high fidelity surrogate model that allows to significantly reduce the computational costs associated with the Bayesian model updating technique. A set of Artificial Neural Networks are proposed to replace multi non-linear input-output relationships of finite element (FE) models. An application for updating the model parameters of the FE model of the DRL-AIRMOD structure is presented.
Original languageEnglish
Pages (from-to)978-983
Number of pages6
JournalProcedia Engineering
Publication statusPublished - 12 Sep 2017
EventX International Conference on Structural Dynamics, EURODYN 2017 - Rome, Italy
Duration: 10 Sep 201713 Sep 2017


  • model updating
  • artificial neural networks
  • Bayesian
  • simulation

Fingerprint Dive into the research topics of 'Model updating strategy of the DLR-AIRMOD test structure'. Together they form a unique fingerprint.

  • Cite this