Mitigation of debris in LEO using space-based lasers

Research output: Contribution to conferencePaper

49 Downloads (Pure)


Small (<10cm) debris fragments present a significant threat to all operational satellites in orbit. Although numerous strategies for debris mitigation have been proposed, most active space-based methods involve rendezvous maneuvers with targeted pieces of debris, making them unsuitable for the cleaning up of large populations of fragments. There are more appropriate for removing larger objects which are potential sources of further debris. Moreover, these types of strategies are inapplicable to fragments which are too small to be tracked from Earth which is a requirement for rendezvous. This paper extends previous work by the authors by focusing on the photon pressure case and using the previously developed models for investigating application to collision avoidance .This paper investigates through numerical simulations the impact of an active debris mitigation strategy using space-based lasers,targeted at debris shells resulting from collision events. A realistic concept is proposed and modelled in detail using opportunistic inter-action with debris, without rendezvous, and requiring zero knowledge of individual fragments' orbits from ground-based observations. The impact of the mission is simulated numerically by analyzing the dynamics of typical encounters and employing high-fidelity models of both photon pressure and laser ablation based interaction mechanisms. The models are then adapted to the case of collision avoidance, which requires far less momentum transfer to achieve a meaningful displacement after several orbit
Original languageEnglish
Number of pages10
Publication statusPublished - 27 Oct 2021
Event72nd International Astronautical Congress - Dubai World Trade Centre, Dubai, United Arab Emirates
Duration: 25 Oct 202129 Oct 2021


Conference72nd International Astronautical Congress
Abbreviated titleIAC 2021
Country/TerritoryUnited Arab Emirates
Internet address


  • asteroid flyby
  • formation flying
  • nanosatellite


Dive into the research topics of 'Mitigation of debris in LEO using space-based lasers'. Together they form a unique fingerprint.

Cite this