Mission and system design for the manipulation of PHOs with space-borne lasers

Nicolas Thiry, Massimiliano Vasile, Emanuele Monchieri

Research output: Chapter in Book/Report/Conference proceedingConference contribution book

3 Citations (Scopus)

Abstract

Owing to their ability to move a target in space without requiring propellant, laser-based deflection methods have gained attention among the research community in the recent years. With laser ablation, the vaporized material is used to push the target itself allowing for a significant reduction in the mass requirement for a space mission. Specifically, this paper addresses two important issues which have remained unanswered by previous studies: the impact of the tumbling motion of the target as well as the impact of the finite thickness of the material ablated in the case of a space debris. We developed an analytical model based on energetic considerations in order to predict the efficiency range theoretically allowed by a CW laser deflection system operating under the plasma formation threshold and in absence of the two aforementioned issues. A numerical model was then developed to solve the transient heat equation in presence of vaporization and melting and assess the efficiency reduction due to the unsteadiness induced by the tumbling motion of the potentially hazardous object (PHO). The model was translated to handle the case where the target is a piece of space debris by considering specific materials such as aluminum and titanium alloys or even carbon fiber and by adapting the finite size of the computational domain along with the propagation of the ablation front. From the results of this later model, pulsed lasers appear better suited to answer the needs of a space debris de-orbiting laser system rather than CW lasers. An empirical ablation threshold is also found that establishes a direct relation between the pulse duration or the heating time (CW case), the delivered flux and the properties of the material. Derived from theoretical consideration, this threshold matches well with the predictions of our numerical model. Moreover, the numerical results are found to agree with published data of thrust coupling coefficient on targets made of aluminium and titanium alloys. In the second part of the paper, we coupled our thrust model within an orbit propagator and considered several redirect scenarios for the case of a small(56m) and a larger(100m) asteroid as well as an 8-ton defunct satellite currently orbiting in a sun-synchronous orbit at a 765km altitude. In each scenario, the laser is assumed mounted on a spacecraft that will first rendez-vous with the target and will then operate from a safe distance (500m). Based on the results, realistic mission architectures are explored. Within the last section, the paper also highlights the advantages offered in term of redundancy and scalability by techniques such as beam combining or formation flying. We show that a medium class mission carrying a CW laser system able to generate 2.4kW of output power could ensure the deflection of a 56m asteroid while a formation of such spacecraft could also achieve the deflection of a larger threat. For the debris case, our preliminary results indicate that a spacecraft carrying an actively Q-switched diode-pumped solid state laser (DPSSL) able to generate 3kW of output power would bring the altitude of Envisat down to 400 kilometers in less than 500 days.

LanguageEnglish
Title of host publicationAerospace Conference, 2016 IEEE
Place of PublicationPiscataway
PublisherIEEE
Number of pages13
ISBN (Print)9781467376761
DOIs
Publication statusPublished - 27 Jun 2016
Event2016 IEEE Aerospace Conference, AERO 2016 - Big Sky, United States
Duration: 5 Mar 201612 Mar 2016

Conference

Conference2016 IEEE Aerospace Conference, AERO 2016
CountryUnited States
CityBig Sky
Period5/03/1612/03/16

Fingerprint

spaceborne lasers
Space debris
systems engineering
Continuous wave lasers
manipulators
laser
Systems analysis
Spacecraft
Barreling
space debris
Asteroids
Lasers
deflection
Ablation
tumbling motion
Titanium alloys
lasers
Numerical models
Aluminum alloys
spacecraft

Keywords

  • laser ablation
  • laser modes
  • space vehicles
  • heating
  • laser theory
  • space debris

Cite this

Thiry, Nicolas ; Vasile, Massimiliano ; Monchieri, Emanuele. / Mission and system design for the manipulation of PHOs with space-borne lasers. Aerospace Conference, 2016 IEEE. Piscataway : IEEE, 2016.
@inproceedings{b5f1504989654b0f82a7b0278099a01e,
title = "Mission and system design for the manipulation of PHOs with space-borne lasers",
abstract = "Owing to their ability to move a target in space without requiring propellant, laser-based deflection methods have gained attention among the research community in the recent years. With laser ablation, the vaporized material is used to push the target itself allowing for a significant reduction in the mass requirement for a space mission. Specifically, this paper addresses two important issues which have remained unanswered by previous studies: the impact of the tumbling motion of the target as well as the impact of the finite thickness of the material ablated in the case of a space debris. We developed an analytical model based on energetic considerations in order to predict the efficiency range theoretically allowed by a CW laser deflection system operating under the plasma formation threshold and in absence of the two aforementioned issues. A numerical model was then developed to solve the transient heat equation in presence of vaporization and melting and assess the efficiency reduction due to the unsteadiness induced by the tumbling motion of the potentially hazardous object (PHO). The model was translated to handle the case where the target is a piece of space debris by considering specific materials such as aluminum and titanium alloys or even carbon fiber and by adapting the finite size of the computational domain along with the propagation of the ablation front. From the results of this later model, pulsed lasers appear better suited to answer the needs of a space debris de-orbiting laser system rather than CW lasers. An empirical ablation threshold is also found that establishes a direct relation between the pulse duration or the heating time (CW case), the delivered flux and the properties of the material. Derived from theoretical consideration, this threshold matches well with the predictions of our numerical model. Moreover, the numerical results are found to agree with published data of thrust coupling coefficient on targets made of aluminium and titanium alloys. In the second part of the paper, we coupled our thrust model within an orbit propagator and considered several redirect scenarios for the case of a small(56m) and a larger(100m) asteroid as well as an 8-ton defunct satellite currently orbiting in a sun-synchronous orbit at a 765km altitude. In each scenario, the laser is assumed mounted on a spacecraft that will first rendez-vous with the target and will then operate from a safe distance (500m). Based on the results, realistic mission architectures are explored. Within the last section, the paper also highlights the advantages offered in term of redundancy and scalability by techniques such as beam combining or formation flying. We show that a medium class mission carrying a CW laser system able to generate 2.4kW of output power could ensure the deflection of a 56m asteroid while a formation of such spacecraft could also achieve the deflection of a larger threat. For the debris case, our preliminary results indicate that a spacecraft carrying an actively Q-switched diode-pumped solid state laser (DPSSL) able to generate 3kW of output power would bring the altitude of Envisat down to 400 kilometers in less than 500 days.",
keywords = "laser ablation, laser modes, space vehicles, heating, laser theory, space debris",
author = "Nicolas Thiry and Massimiliano Vasile and Emanuele Monchieri",
note = "(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.",
year = "2016",
month = "6",
day = "27",
doi = "10.1109/AERO.2016.7500610",
language = "English",
isbn = "9781467376761",
booktitle = "Aerospace Conference, 2016 IEEE",
publisher = "IEEE",

}

Thiry, N, Vasile, M & Monchieri, E 2016, Mission and system design for the manipulation of PHOs with space-borne lasers. in Aerospace Conference, 2016 IEEE., 7500610, IEEE, Piscataway, 2016 IEEE Aerospace Conference, AERO 2016, Big Sky, United States, 5/03/16. https://doi.org/10.1109/AERO.2016.7500610

Mission and system design for the manipulation of PHOs with space-borne lasers. / Thiry, Nicolas; Vasile, Massimiliano; Monchieri, Emanuele.

Aerospace Conference, 2016 IEEE. Piscataway : IEEE, 2016. 7500610.

Research output: Chapter in Book/Report/Conference proceedingConference contribution book

TY - GEN

T1 - Mission and system design for the manipulation of PHOs with space-borne lasers

AU - Thiry, Nicolas

AU - Vasile, Massimiliano

AU - Monchieri, Emanuele

N1 - (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

PY - 2016/6/27

Y1 - 2016/6/27

N2 - Owing to their ability to move a target in space without requiring propellant, laser-based deflection methods have gained attention among the research community in the recent years. With laser ablation, the vaporized material is used to push the target itself allowing for a significant reduction in the mass requirement for a space mission. Specifically, this paper addresses two important issues which have remained unanswered by previous studies: the impact of the tumbling motion of the target as well as the impact of the finite thickness of the material ablated in the case of a space debris. We developed an analytical model based on energetic considerations in order to predict the efficiency range theoretically allowed by a CW laser deflection system operating under the plasma formation threshold and in absence of the two aforementioned issues. A numerical model was then developed to solve the transient heat equation in presence of vaporization and melting and assess the efficiency reduction due to the unsteadiness induced by the tumbling motion of the potentially hazardous object (PHO). The model was translated to handle the case where the target is a piece of space debris by considering specific materials such as aluminum and titanium alloys or even carbon fiber and by adapting the finite size of the computational domain along with the propagation of the ablation front. From the results of this later model, pulsed lasers appear better suited to answer the needs of a space debris de-orbiting laser system rather than CW lasers. An empirical ablation threshold is also found that establishes a direct relation between the pulse duration or the heating time (CW case), the delivered flux and the properties of the material. Derived from theoretical consideration, this threshold matches well with the predictions of our numerical model. Moreover, the numerical results are found to agree with published data of thrust coupling coefficient on targets made of aluminium and titanium alloys. In the second part of the paper, we coupled our thrust model within an orbit propagator and considered several redirect scenarios for the case of a small(56m) and a larger(100m) asteroid as well as an 8-ton defunct satellite currently orbiting in a sun-synchronous orbit at a 765km altitude. In each scenario, the laser is assumed mounted on a spacecraft that will first rendez-vous with the target and will then operate from a safe distance (500m). Based on the results, realistic mission architectures are explored. Within the last section, the paper also highlights the advantages offered in term of redundancy and scalability by techniques such as beam combining or formation flying. We show that a medium class mission carrying a CW laser system able to generate 2.4kW of output power could ensure the deflection of a 56m asteroid while a formation of such spacecraft could also achieve the deflection of a larger threat. For the debris case, our preliminary results indicate that a spacecraft carrying an actively Q-switched diode-pumped solid state laser (DPSSL) able to generate 3kW of output power would bring the altitude of Envisat down to 400 kilometers in less than 500 days.

AB - Owing to their ability to move a target in space without requiring propellant, laser-based deflection methods have gained attention among the research community in the recent years. With laser ablation, the vaporized material is used to push the target itself allowing for a significant reduction in the mass requirement for a space mission. Specifically, this paper addresses two important issues which have remained unanswered by previous studies: the impact of the tumbling motion of the target as well as the impact of the finite thickness of the material ablated in the case of a space debris. We developed an analytical model based on energetic considerations in order to predict the efficiency range theoretically allowed by a CW laser deflection system operating under the plasma formation threshold and in absence of the two aforementioned issues. A numerical model was then developed to solve the transient heat equation in presence of vaporization and melting and assess the efficiency reduction due to the unsteadiness induced by the tumbling motion of the potentially hazardous object (PHO). The model was translated to handle the case where the target is a piece of space debris by considering specific materials such as aluminum and titanium alloys or even carbon fiber and by adapting the finite size of the computational domain along with the propagation of the ablation front. From the results of this later model, pulsed lasers appear better suited to answer the needs of a space debris de-orbiting laser system rather than CW lasers. An empirical ablation threshold is also found that establishes a direct relation between the pulse duration or the heating time (CW case), the delivered flux and the properties of the material. Derived from theoretical consideration, this threshold matches well with the predictions of our numerical model. Moreover, the numerical results are found to agree with published data of thrust coupling coefficient on targets made of aluminium and titanium alloys. In the second part of the paper, we coupled our thrust model within an orbit propagator and considered several redirect scenarios for the case of a small(56m) and a larger(100m) asteroid as well as an 8-ton defunct satellite currently orbiting in a sun-synchronous orbit at a 765km altitude. In each scenario, the laser is assumed mounted on a spacecraft that will first rendez-vous with the target and will then operate from a safe distance (500m). Based on the results, realistic mission architectures are explored. Within the last section, the paper also highlights the advantages offered in term of redundancy and scalability by techniques such as beam combining or formation flying. We show that a medium class mission carrying a CW laser system able to generate 2.4kW of output power could ensure the deflection of a 56m asteroid while a formation of such spacecraft could also achieve the deflection of a larger threat. For the debris case, our preliminary results indicate that a spacecraft carrying an actively Q-switched diode-pumped solid state laser (DPSSL) able to generate 3kW of output power would bring the altitude of Envisat down to 400 kilometers in less than 500 days.

KW - laser ablation

KW - laser modes

KW - space vehicles

KW - heating

KW - laser theory

KW - space debris

UR - http://2016.aeroconf.org/

UR - http://www.scopus.com/inward/record.url?scp=84978535993&partnerID=8YFLogxK

U2 - 10.1109/AERO.2016.7500610

DO - 10.1109/AERO.2016.7500610

M3 - Conference contribution book

SN - 9781467376761

BT - Aerospace Conference, 2016 IEEE

PB - IEEE

CY - Piscataway

ER -