Minimisation of mechanical cross talk in periodic piezoelectric composite arrays

D.C. Robertson, G. Hayward, A. Gachagan, P. Reynolds

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

This paper describes an investigation into mechanical cross-talk within 1-3 and 2-2 connectivity piezoelectric composite array configurations, comprising a matrix of active piezoelectric elements embedded within a passive, polymeric, material. One way to take full advantage of the reported sensitivity and bandwidth improvements from single-crystal materials is to configure them as a piezoelectric composite. For this work, piezoelectric ceramic, lithium niobate and single-crystal pmn-pt materials are investigated as the active component in the piezocomposite array designs. Within these piezoelectric configurations, the generation of ultrasonic inter-pillar modes, which arise due to the periodicity of the active piezoelectric elements within the piezocomposite lattice, can be detrimental to the array performance. Consequently, finite element (FE) modelling, using PZFlex, is utilised to provide design techniques for the removal of these inter-pillar modes from the frequency band of interest and the realisation of unimodal piezocomposite transducer structures. Further FE modelling is used to generate dispersion data for 2-2, and doubly periodic 1-3, composite substrates. This dispersion data is used to design the linear arrays, with the objective of minimising mechanical inter-element cross-talk. A comparison between the FE predicted mechanical cross-coupling between array elements, for each composite material operating in air, is supported by experimentally measured data. Subsequently, the validated FE models are extended to include both operation into a solid load and the introduction of a backing material to simulate the operation of a practical NDE array transducer. The design techniques obtained from PZFlex are shown to produce arrays with low cross-talk and the extent of the cross-talk in manufactured and modelled ceramic and pmn-pt single-crystal arrays is compared.
LanguageEnglish
Pages658-661
Number of pages4
JournalInsight: The Journal of the British Institute of Non-Destructive Testing
Volume46
Issue number11
DOIs
Publication statusPublished - 2004

Fingerprint

Composite materials
Single crystals
Transducers
Piezoelectric ceramics
Frequency bands
Lithium
Ultrasonics
Bandwidth
Polymers
Substrates
Air
lithium niobate

Keywords

  • piezoelectric composite arrays
  • composite arrays
  • ultrasonic inter-pillar modes

Cite this

@article{057ad45d0cc942d3b26db48d30775083,
title = "Minimisation of mechanical cross talk in periodic piezoelectric composite arrays",
abstract = "This paper describes an investigation into mechanical cross-talk within 1-3 and 2-2 connectivity piezoelectric composite array configurations, comprising a matrix of active piezoelectric elements embedded within a passive, polymeric, material. One way to take full advantage of the reported sensitivity and bandwidth improvements from single-crystal materials is to configure them as a piezoelectric composite. For this work, piezoelectric ceramic, lithium niobate and single-crystal pmn-pt materials are investigated as the active component in the piezocomposite array designs. Within these piezoelectric configurations, the generation of ultrasonic inter-pillar modes, which arise due to the periodicity of the active piezoelectric elements within the piezocomposite lattice, can be detrimental to the array performance. Consequently, finite element (FE) modelling, using PZFlex, is utilised to provide design techniques for the removal of these inter-pillar modes from the frequency band of interest and the realisation of unimodal piezocomposite transducer structures. Further FE modelling is used to generate dispersion data for 2-2, and doubly periodic 1-3, composite substrates. This dispersion data is used to design the linear arrays, with the objective of minimising mechanical inter-element cross-talk. A comparison between the FE predicted mechanical cross-coupling between array elements, for each composite material operating in air, is supported by experimentally measured data. Subsequently, the validated FE models are extended to include both operation into a solid load and the introduction of a backing material to simulate the operation of a practical NDE array transducer. The design techniques obtained from PZFlex are shown to produce arrays with low cross-talk and the extent of the cross-talk in manufactured and modelled ceramic and pmn-pt single-crystal arrays is compared.",
keywords = "piezoelectric composite arrays, composite arrays , ultrasonic inter-pillar modes",
author = "D.C. Robertson and G. Hayward and A. Gachagan and P. Reynolds",
year = "2004",
doi = "10.1784/insi.46.11.658.52274",
language = "English",
volume = "46",
pages = "658--661",
journal = "Insight: The Journal of the British Institute of Non-Destructive Testing",
issn = "1354-2575",
number = "11",

}

Minimisation of mechanical cross talk in periodic piezoelectric composite arrays. / Robertson, D.C.; Hayward, G.; Gachagan, A.; Reynolds, P.

In: Insight: The Journal of the British Institute of Non-Destructive Testing, Vol. 46, No. 11, 2004, p. 658-661.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Minimisation of mechanical cross talk in periodic piezoelectric composite arrays

AU - Robertson, D.C.

AU - Hayward, G.

AU - Gachagan, A.

AU - Reynolds, P.

PY - 2004

Y1 - 2004

N2 - This paper describes an investigation into mechanical cross-talk within 1-3 and 2-2 connectivity piezoelectric composite array configurations, comprising a matrix of active piezoelectric elements embedded within a passive, polymeric, material. One way to take full advantage of the reported sensitivity and bandwidth improvements from single-crystal materials is to configure them as a piezoelectric composite. For this work, piezoelectric ceramic, lithium niobate and single-crystal pmn-pt materials are investigated as the active component in the piezocomposite array designs. Within these piezoelectric configurations, the generation of ultrasonic inter-pillar modes, which arise due to the periodicity of the active piezoelectric elements within the piezocomposite lattice, can be detrimental to the array performance. Consequently, finite element (FE) modelling, using PZFlex, is utilised to provide design techniques for the removal of these inter-pillar modes from the frequency band of interest and the realisation of unimodal piezocomposite transducer structures. Further FE modelling is used to generate dispersion data for 2-2, and doubly periodic 1-3, composite substrates. This dispersion data is used to design the linear arrays, with the objective of minimising mechanical inter-element cross-talk. A comparison between the FE predicted mechanical cross-coupling between array elements, for each composite material operating in air, is supported by experimentally measured data. Subsequently, the validated FE models are extended to include both operation into a solid load and the introduction of a backing material to simulate the operation of a practical NDE array transducer. The design techniques obtained from PZFlex are shown to produce arrays with low cross-talk and the extent of the cross-talk in manufactured and modelled ceramic and pmn-pt single-crystal arrays is compared.

AB - This paper describes an investigation into mechanical cross-talk within 1-3 and 2-2 connectivity piezoelectric composite array configurations, comprising a matrix of active piezoelectric elements embedded within a passive, polymeric, material. One way to take full advantage of the reported sensitivity and bandwidth improvements from single-crystal materials is to configure them as a piezoelectric composite. For this work, piezoelectric ceramic, lithium niobate and single-crystal pmn-pt materials are investigated as the active component in the piezocomposite array designs. Within these piezoelectric configurations, the generation of ultrasonic inter-pillar modes, which arise due to the periodicity of the active piezoelectric elements within the piezocomposite lattice, can be detrimental to the array performance. Consequently, finite element (FE) modelling, using PZFlex, is utilised to provide design techniques for the removal of these inter-pillar modes from the frequency band of interest and the realisation of unimodal piezocomposite transducer structures. Further FE modelling is used to generate dispersion data for 2-2, and doubly periodic 1-3, composite substrates. This dispersion data is used to design the linear arrays, with the objective of minimising mechanical inter-element cross-talk. A comparison between the FE predicted mechanical cross-coupling between array elements, for each composite material operating in air, is supported by experimentally measured data. Subsequently, the validated FE models are extended to include both operation into a solid load and the introduction of a backing material to simulate the operation of a practical NDE array transducer. The design techniques obtained from PZFlex are shown to produce arrays with low cross-talk and the extent of the cross-talk in manufactured and modelled ceramic and pmn-pt single-crystal arrays is compared.

KW - piezoelectric composite arrays

KW - composite arrays

KW - ultrasonic inter-pillar modes

UR - http://www.ndt.net/abstract/wcndt2004/285.htm

U2 - 10.1784/insi.46.11.658.52274

DO - 10.1784/insi.46.11.658.52274

M3 - Article

VL - 46

SP - 658

EP - 661

JO - Insight: The Journal of the British Institute of Non-Destructive Testing

T2 - Insight: The Journal of the British Institute of Non-Destructive Testing

JF - Insight: The Journal of the British Institute of Non-Destructive Testing

SN - 1354-2575

IS - 11

ER -