MILP formulation for controlled islanding of power networks

P.A. Trodden, W.A. Bukhsh, A. Grothey, K.I.M. McKinnon

Research output: Contribution to journalArticlepeer-review

63 Citations (Scopus)


This paper presents a flexible optimization approach to the problem of intentionally forming islands in a power network. A mixed integer linear programming (MILP) formulation is given for the problem of deciding simultaneously on the boundaries of the islands and adjustments to generators, so as to minimize the expected load shed while ensuring no system constraints are violated. The solution of this problem is, within each island, balanced in load and generation and satisfies steady-state DC power flow equations and operating limits. Numerical tests on test networks up to 300 buses show the method is computationally efficient. A subsequent AC optimal load shedding optimization on the islanded network model provides a solution that satisfies AC power flow. Time-domain simulations using second-order models of system dynamics show that if penalties were included in the MILP to discourage disconnecting lines and generators with large flows or outputs, the actions of network splitting and load shedding did not lead to a loss of stability.
Original languageEnglish
Pages (from-to)501-508
Number of pages8
JournalInternational Journal of Electrical Power and Energy Systems
Issue number1
Early online date7 Nov 2012
Publication statusPublished - Feb 2013


  • optimization
  • integer programming
  • controlled islanding
  • blackouts


Dive into the research topics of 'MILP formulation for controlled islanding of power networks'. Together they form a unique fingerprint.

Cite this