Micromechanical analysis of kinematic hardening in natural clay

Zhen-Yu Yin, Ching S. Chang, Pierre-Yves Hicher, Minna Karstunen, Helsinki University of technology, University of Massachusetts, Ecole Centrale de nates, University of Strathclyde, Academy of Finland (Grant 210744) (Funder), EC MRTN-CT-2004-512120 (Funder)

Research output: Contribution to journalArticle

76 Citations (Scopus)
73 Downloads (Pure)

Abstract

This paper presents a micromechanical analysis of the macroscopic behaviour of natural clay. A microstructural stress-strain model for clayey material has been developed which considers clay as a collection of clusters. The deformation of a representative volume of the material is generated by mobilizing and compressing all the clusters along their contact planes. Numerical simulations of multistage drained triaxial stress paths on Otaniemi clay have been performed and compared the numerical results to the experimental ones in order to validate the modelling approach. Then, the numerical results obtained at the microscopic level were analysed in order to explain the induced anisotropy observed in the clay behaviour at the macroscopic level. The evolution of the state variables at each contact plane during loading can explain the changes in shape and position in the stress space of the yield surface at the macroscopic level, as well as the rotation of the axes of anisotropy of the material.
Original languageEnglish
Pages (from-to)1413-1435
Number of pages23
JournalInternational Journal of Plasticity
Volume25
Issue number8
DOIs
Publication statusPublished - 31 Aug 2009

Keywords

  • microstructures
  • yield condition
  • anisotropic material
  • constitutive behaviour
  • elastic–plastic material
  • civil engineering

Fingerprint Dive into the research topics of 'Micromechanical analysis of kinematic hardening in natural clay'. Together they form a unique fingerprint.

Cite this