Microfluidics-based fabrication of cell-laden hydrogel microfibers for potential applications in tissue engineering

Gen Wang, Luanluan Jia, Fengxuan Han, Jiayuan Wang, Li Yu, Yingkang Yu, Gareth Turnbull, Mingyu Guo, Wenmiao Shu, Bin Li

Research output: Contribution to journalArticle

3 Citations (Scopus)
10 Downloads (Pure)

Abstract

Fibrous hydrogel scaffolds have recently attracted increasing attention for tissue engineering applications. While a number of approaches have been proposed for fabricating microfibers, it remains difficult for current methods to produce materials that meet the essential requirements of being simple, flexible and bio-friendly. It is especially challenging to prepare cell-laden microfibers which have different structures to meet the needs of various applications using a simple device. In this study, we developed a facile two-flow microfluidic system, through which cell-laden hydrogel microfibers with various structures could be easily prepared in one step. Aiming to meet different tissue engineering needs, several types of microfibers with different structures, including single-layer, double-layer and hollow microfibers, have been prepared using an alginate-methacrylated gelatin composite hydrogel by merely changing the inner and outer fluids. Cell-laden single-layer microfibers were obtained by subsequently seeding mouse embryonic osteoblast precursor cells (MC3T3-E1) cells on the surface of the as-prepared microfibers. Cell-laden double-layer and hollow microfibers were prepared by directly encapsulating MC3T3-E1 cells or human umbilical vein endothelial cells (HUVECs) in the cores of microfibers upon their fabrication. Prominent proliferation of cells happened in all cell-laden single-layer, double-layer and hollow microfibers, implying potential applications for them in tissue engineering.

Original languageEnglish
Article number1633
Number of pages11
JournalMolecules
Volume24
Issue number8
DOIs
Publication statusPublished - 25 Apr 2019

Keywords

  • cell-laden
  • microfibers
  • microfluidics
  • tissue engineering

Fingerprint Dive into the research topics of 'Microfluidics-based fabrication of cell-laden hydrogel microfibers for potential applications in tissue engineering'. Together they form a unique fingerprint.

  • Cite this