Meta-metallation of N,N-dimethylaniline: contrasting direct sodium-mediated zincation with indirect sodiation-dialkylzinc co-complexation

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Previously we reported that direct zincation of N,N-dimethylaniline by the mixed-metal zincate reagent 1 ((TMEDA)Na(TMP)(t-Bu)Zn(t-Bu)) surprisingly led to meta-metallation (zincation) of the aniline, as manifested in the crystalline complex 2 ((TMEDA)Na(TMP)(m-C6H4-NMe2)Zn(t-Bu)), and that iodination of these isolated crystals produced the meta-isomer N, N-dimethyl-3-iodoaniline quantitatively. Completing the study here we find that treating the reaction solution with iodine produces a 72% conversion and results in a mixture of regioisomers of N,N-dimethyliodoaniline, with the meta-isomer still the major product (ortho: meta: para ratio, 6:73:21), as determined by NMR. In contrast to this bimetallic method, sodiation of N,N-dimethylaniline with n-BuNa produced the dimeric, ortho-sodiated complex 3 (((TMEDA)Na(o-C6H4-NMe2))(2)), as characterised by X-ray crystallography and NMR. No regioisomers were observed in the reaction solution. Introducing t-Bu2Zn to this reaction solution afforded a cocrystalline product in the solid-state, composed of the bis-anilide 4 ((TMEDA)Na(o-C6H4-NMe2)(2)Zn(t-Bu)) and the Me2N-C cleavage product 5 ({(TMEDA)(2)Na}(+){(t-Bu2Zn)(2)(mu-NMe2)}(-)), which was characterised by X-ray crystallography. NMR studies of the reaction mixture that produces 4 and 5 revealed one additional species, but the mixture as a whole contained only ortho-species and a trace amount of para-species as established by iodine quenching. In an indirect variation of the bimetallic reaction, TMP(H) was added at room temperature to the reaction mixture that afforded 4 and 5. This gave the crystalline product 6 ((TMEDA)Na(TMP)(o-C6H4-NMe2)Zn(t-Bu)), the ortho-isomer of the meta-complex 2, as determined from X-ray crystallographic and NMR data. Monitoring the regioselectivity of the reaction by iodination revealed a 16.6:1.6:1.0 ortho: meta: para ratio. Interestingly, when the TMP(H) containing solution was heated under reflux for 18 hours more meta-isomer was produced (corresponding ratio 3.7:4.2:1.0). It is likely that this change has its origin in a retro reaction that produces the original base 1 as an intermediate. Theoretical calculations at the DFT level using the B3LYP method and the 6-311G** basis set were used to probe the energetics of both monometallic and bimetallic systems. In accord with the experimental results, it was found that ortho-metallation was favoured by sodiation; whereas meta- (closely followed by para-) metallation was favoured by direct sodium-mediated zincation.

LanguageEnglish
Pages1234-1248
Number of pages15
JournalBeilstein Journal of Organic Chemistry
Volume7
DOIs
Publication statusPublished - 6 Sep 2011

Fingerprint

Thymidine Monophosphate
Complexation
Sodium
Isomers
Nuclear magnetic resonance
X ray crystallography
Iodine
Anilides
Crystalline materials
Regioselectivity
Discrete Fourier transforms
phenyllithium
N,N-dimethylaniline
Quenching
Metals
X rays
Crystals
Monitoring

Keywords

  • alkali metal
  • crystal structure
  • isomerisation
  • metallation
  • zincation
  • chemoselective base
  • reaction pathway
  • ring metalation
  • aromatics
  • toluene
  • amide
  • alkyl

Cite this

@article{aefa58f5d54844d0a56e0281834d77c0,
title = "Meta-metallation of N,N-dimethylaniline: contrasting direct sodium-mediated zincation with indirect sodiation-dialkylzinc co-complexation",
abstract = "Previously we reported that direct zincation of N,N-dimethylaniline by the mixed-metal zincate reagent 1 ((TMEDA)Na(TMP)(t-Bu)Zn(t-Bu)) surprisingly led to meta-metallation (zincation) of the aniline, as manifested in the crystalline complex 2 ((TMEDA)Na(TMP)(m-C6H4-NMe2)Zn(t-Bu)), and that iodination of these isolated crystals produced the meta-isomer N, N-dimethyl-3-iodoaniline quantitatively. Completing the study here we find that treating the reaction solution with iodine produces a 72{\%} conversion and results in a mixture of regioisomers of N,N-dimethyliodoaniline, with the meta-isomer still the major product (ortho: meta: para ratio, 6:73:21), as determined by NMR. In contrast to this bimetallic method, sodiation of N,N-dimethylaniline with n-BuNa produced the dimeric, ortho-sodiated complex 3 (((TMEDA)Na(o-C6H4-NMe2))(2)), as characterised by X-ray crystallography and NMR. No regioisomers were observed in the reaction solution. Introducing t-Bu2Zn to this reaction solution afforded a cocrystalline product in the solid-state, composed of the bis-anilide 4 ((TMEDA)Na(o-C6H4-NMe2)(2)Zn(t-Bu)) and the Me2N-C cleavage product 5 ({(TMEDA)(2)Na}(+){(t-Bu2Zn)(2)(mu-NMe2)}(-)), which was characterised by X-ray crystallography. NMR studies of the reaction mixture that produces 4 and 5 revealed one additional species, but the mixture as a whole contained only ortho-species and a trace amount of para-species as established by iodine quenching. In an indirect variation of the bimetallic reaction, TMP(H) was added at room temperature to the reaction mixture that afforded 4 and 5. This gave the crystalline product 6 ((TMEDA)Na(TMP)(o-C6H4-NMe2)Zn(t-Bu)), the ortho-isomer of the meta-complex 2, as determined from X-ray crystallographic and NMR data. Monitoring the regioselectivity of the reaction by iodination revealed a 16.6:1.6:1.0 ortho: meta: para ratio. Interestingly, when the TMP(H) containing solution was heated under reflux for 18 hours more meta-isomer was produced (corresponding ratio 3.7:4.2:1.0). It is likely that this change has its origin in a retro reaction that produces the original base 1 as an intermediate. Theoretical calculations at the DFT level using the B3LYP method and the 6-311G** basis set were used to probe the energetics of both monometallic and bimetallic systems. In accord with the experimental results, it was found that ortho-metallation was favoured by sodiation; whereas meta- (closely followed by para-) metallation was favoured by direct sodium-mediated zincation.",
keywords = "alkali metal, crystal structure, isomerisation, metallation, zincation, chemoselective base, reaction pathway, ring metalation, aromatics, toluene, amide, alkyl",
author = "Armstrong, {David R.} and Liam Balloch and Eva Hevia and Kennedy, {Alan R.} and Mulvey, {Robert E.} and O'Hara, {Charles T.} and Robertson, {Stuart D.}",
year = "2011",
month = "9",
day = "6",
doi = "10.3762/bjoc.7.144",
language = "English",
volume = "7",
pages = "1234--1248",
journal = "Beilstein Journal of Organic Chemistry",
issn = "1860-5397",

}

TY - JOUR

T1 - Meta-metallation of N,N-dimethylaniline: contrasting direct sodium-mediated zincation with indirect sodiation-dialkylzinc co-complexation

AU - Armstrong, David R.

AU - Balloch, Liam

AU - Hevia, Eva

AU - Kennedy, Alan R.

AU - Mulvey, Robert E.

AU - O'Hara, Charles T.

AU - Robertson, Stuart D.

PY - 2011/9/6

Y1 - 2011/9/6

N2 - Previously we reported that direct zincation of N,N-dimethylaniline by the mixed-metal zincate reagent 1 ((TMEDA)Na(TMP)(t-Bu)Zn(t-Bu)) surprisingly led to meta-metallation (zincation) of the aniline, as manifested in the crystalline complex 2 ((TMEDA)Na(TMP)(m-C6H4-NMe2)Zn(t-Bu)), and that iodination of these isolated crystals produced the meta-isomer N, N-dimethyl-3-iodoaniline quantitatively. Completing the study here we find that treating the reaction solution with iodine produces a 72% conversion and results in a mixture of regioisomers of N,N-dimethyliodoaniline, with the meta-isomer still the major product (ortho: meta: para ratio, 6:73:21), as determined by NMR. In contrast to this bimetallic method, sodiation of N,N-dimethylaniline with n-BuNa produced the dimeric, ortho-sodiated complex 3 (((TMEDA)Na(o-C6H4-NMe2))(2)), as characterised by X-ray crystallography and NMR. No regioisomers were observed in the reaction solution. Introducing t-Bu2Zn to this reaction solution afforded a cocrystalline product in the solid-state, composed of the bis-anilide 4 ((TMEDA)Na(o-C6H4-NMe2)(2)Zn(t-Bu)) and the Me2N-C cleavage product 5 ({(TMEDA)(2)Na}(+){(t-Bu2Zn)(2)(mu-NMe2)}(-)), which was characterised by X-ray crystallography. NMR studies of the reaction mixture that produces 4 and 5 revealed one additional species, but the mixture as a whole contained only ortho-species and a trace amount of para-species as established by iodine quenching. In an indirect variation of the bimetallic reaction, TMP(H) was added at room temperature to the reaction mixture that afforded 4 and 5. This gave the crystalline product 6 ((TMEDA)Na(TMP)(o-C6H4-NMe2)Zn(t-Bu)), the ortho-isomer of the meta-complex 2, as determined from X-ray crystallographic and NMR data. Monitoring the regioselectivity of the reaction by iodination revealed a 16.6:1.6:1.0 ortho: meta: para ratio. Interestingly, when the TMP(H) containing solution was heated under reflux for 18 hours more meta-isomer was produced (corresponding ratio 3.7:4.2:1.0). It is likely that this change has its origin in a retro reaction that produces the original base 1 as an intermediate. Theoretical calculations at the DFT level using the B3LYP method and the 6-311G** basis set were used to probe the energetics of both monometallic and bimetallic systems. In accord with the experimental results, it was found that ortho-metallation was favoured by sodiation; whereas meta- (closely followed by para-) metallation was favoured by direct sodium-mediated zincation.

AB - Previously we reported that direct zincation of N,N-dimethylaniline by the mixed-metal zincate reagent 1 ((TMEDA)Na(TMP)(t-Bu)Zn(t-Bu)) surprisingly led to meta-metallation (zincation) of the aniline, as manifested in the crystalline complex 2 ((TMEDA)Na(TMP)(m-C6H4-NMe2)Zn(t-Bu)), and that iodination of these isolated crystals produced the meta-isomer N, N-dimethyl-3-iodoaniline quantitatively. Completing the study here we find that treating the reaction solution with iodine produces a 72% conversion and results in a mixture of regioisomers of N,N-dimethyliodoaniline, with the meta-isomer still the major product (ortho: meta: para ratio, 6:73:21), as determined by NMR. In contrast to this bimetallic method, sodiation of N,N-dimethylaniline with n-BuNa produced the dimeric, ortho-sodiated complex 3 (((TMEDA)Na(o-C6H4-NMe2))(2)), as characterised by X-ray crystallography and NMR. No regioisomers were observed in the reaction solution. Introducing t-Bu2Zn to this reaction solution afforded a cocrystalline product in the solid-state, composed of the bis-anilide 4 ((TMEDA)Na(o-C6H4-NMe2)(2)Zn(t-Bu)) and the Me2N-C cleavage product 5 ({(TMEDA)(2)Na}(+){(t-Bu2Zn)(2)(mu-NMe2)}(-)), which was characterised by X-ray crystallography. NMR studies of the reaction mixture that produces 4 and 5 revealed one additional species, but the mixture as a whole contained only ortho-species and a trace amount of para-species as established by iodine quenching. In an indirect variation of the bimetallic reaction, TMP(H) was added at room temperature to the reaction mixture that afforded 4 and 5. This gave the crystalline product 6 ((TMEDA)Na(TMP)(o-C6H4-NMe2)Zn(t-Bu)), the ortho-isomer of the meta-complex 2, as determined from X-ray crystallographic and NMR data. Monitoring the regioselectivity of the reaction by iodination revealed a 16.6:1.6:1.0 ortho: meta: para ratio. Interestingly, when the TMP(H) containing solution was heated under reflux for 18 hours more meta-isomer was produced (corresponding ratio 3.7:4.2:1.0). It is likely that this change has its origin in a retro reaction that produces the original base 1 as an intermediate. Theoretical calculations at the DFT level using the B3LYP method and the 6-311G** basis set were used to probe the energetics of both monometallic and bimetallic systems. In accord with the experimental results, it was found that ortho-metallation was favoured by sodiation; whereas meta- (closely followed by para-) metallation was favoured by direct sodium-mediated zincation.

KW - alkali metal

KW - crystal structure

KW - isomerisation

KW - metallation

KW - zincation

KW - chemoselective base

KW - reaction pathway

KW - ring metalation

KW - aromatics

KW - toluene

KW - amide

KW - alkyl

UR - http://www.scopus.com/inward/record.url?scp=80052701700&partnerID=8YFLogxK

U2 - 10.3762/bjoc.7.144

DO - 10.3762/bjoc.7.144

M3 - Article

VL - 7

SP - 1234

EP - 1248

JO - Beilstein Journal of Organic Chemistry

T2 - Beilstein Journal of Organic Chemistry

JF - Beilstein Journal of Organic Chemistry

SN - 1860-5397

ER -