Maximum walk entropy implies walk regularity

Ernesto Estrada, Jose Antonio de la Pena

Research output: Contribution to journalArticle

3 Citations (Scopus)
125 Downloads (Pure)

Abstract

The notion of walk entropy SV(G,β)SV(G,β) for a graph G at the inverse temperature β was put forward recently by Estrada et al. (2014) [7]. It was further proved by Benzi [1] that a graph is walk-regular if and only if its walk entropy is maximum for all temperatures β∈Iβ∈I, where I is a set of real numbers containing at least an accumulation point. Benzi [1] conjectured that walk regularity can be characterized by the walk entropy if and only if there is a β>0β>0 such that SV(G,β)SV(G,β) is maximum. Here we prove that a graph is walk regular if and only if the View the MathML sourceSV(G,β=1)=lnn. We also prove that if the graph is regular but not walk-regular View the MathML sourceSV(G,β)<lnn for every β>0β>0 and View the MathML sourcelimβ→0SV(G,β)=lnn=limβ→∞SV(G,β). If the graph is not regular then View the MathML sourceSV(G,β)≤lnn−ϵ for every β>0β>0, for some ϵ>0ϵ>0.
Original languageEnglish
Pages (from-to)542-547
Number of pages6
JournalLinear Algebra and its Applications
Volume458
Early online date9 Jul 2014
DOIs
Publication statusPublished - 1 Oct 2014

Keywords

  • walk-regularity
  • graph walks
  • graph entropies

Fingerprint Dive into the research topics of 'Maximum walk entropy implies walk regularity'. Together they form a unique fingerprint.

  • Cite this