Maser radiation from collisionless shocks: application to astrophysical jets

D. C. Speirs, K. Ronald, A. D. R. Phelps, M. E. Koepke, R. A. Cairns, A. Rigby, F. Cruz, R. Trines, R. Bamford, B. J. Kellett, B. Albertazzi, J. E. Cross, F. Fraschetti, P. Graham, P. M. Kozlowski, Y. Kuramitsu, F. Miniati, T. Morita, M. Oliver, B. Reville & 10 others Y. Sakawa, S. Sarkar, C. Spindloe, M. Koenig, L. O. Silva, D. Q. Lamb, P. Tzeferacos, S. Lebedev, G. Gregori, R. Bingham

Research output: Contribution to journalArticle

Abstract

This paper describes a model of electron energization and cyclotron maser emission applicable to astrophysical magnetised collisionless shocks. It is motivated by the work of Begelman, Ergun and Rees [1] who argued that the cyclotron maser instability occurs in localised magnetised collisionless shocks such as those expected in Blazar jets. We report on recent research carried out to investigate electron acceleration at collisionless shocks and maser radiation associated with the accelerated electrons. We describe how electrons accelerated by lower-hybrid waves at collisionless shocks generate cyclotron maser radiation when the accelerated electrons move into regions of stronger magnetic fields. The electrons are accelerated along the magnetic field and magnetically compressed leading to the formation of an electron velocity distribution having a horseshoe shape due to conservation of the electron magnetic moment. Under certain conditions the horseshoe electron velocity distribution function is unstable to the cyclotron maser instability [2,3].
LanguageEnglish
Article numbere17
Number of pages8
JournalHigh Power Laser Science and Engineering
Volume7
DOIs
Publication statusPublished - 14 Mar 2019

Fingerprint

Masers
masers
astrophysics
shock
Radiation
Electrons
radiation
Cyclotrons
cyclotrons
electrons
Velocity distribution
velocity distribution
Magnetic fields
electron acceleration
magnetic fields
Magnetic moments
conservation
Distribution functions
magnetic moments
distribution functions

Keywords

  • laboratory astrophysics
  • plasma physics
  • particle acceleration
  • plasma-wave instabilities

Cite this

Speirs, D. C. ; Ronald, K. ; Phelps, A. D. R. ; Koepke, M. E. ; Cairns, R. A. ; Rigby, A. ; Cruz, F. ; Trines, R. ; Bamford, R. ; Kellett, B. J. ; Albertazzi, B. ; Cross, J. E. ; Fraschetti, F. ; Graham, P. ; Kozlowski, P. M. ; Kuramitsu, Y. ; Miniati, F. ; Morita, T. ; Oliver, M. ; Reville, B. ; Sakawa, Y. ; Sarkar, S. ; Spindloe, C. ; Koenig, M. ; Silva, L. O. ; Lamb, D. Q. ; Tzeferacos, P. ; Lebedev, S. ; Gregori, G. ; Bingham, R. / Maser radiation from collisionless shocks : application to astrophysical jets. In: High Power Laser Science and Engineering. 2019 ; Vol. 7.
@article{f8bad0de880c4ee5b2fad0e08236e337,
title = "Maser radiation from collisionless shocks: application to astrophysical jets",
abstract = "This paper describes a model of electron energization and cyclotron maser emission applicable to astrophysical magnetised collisionless shocks. It is motivated by the work of Begelman, Ergun and Rees [1] who argued that the cyclotron maser instability occurs in localised magnetised collisionless shocks such as those expected in Blazar jets. We report on recent research carried out to investigate electron acceleration at collisionless shocks and maser radiation associated with the accelerated electrons. We describe how electrons accelerated by lower-hybrid waves at collisionless shocks generate cyclotron maser radiation when the accelerated electrons move into regions of stronger magnetic fields. The electrons are accelerated along the magnetic field and magnetically compressed leading to the formation of an electron velocity distribution having a horseshoe shape due to conservation of the electron magnetic moment. Under certain conditions the horseshoe electron velocity distribution function is unstable to the cyclotron maser instability [2,3].",
keywords = "laboratory astrophysics, plasma physics, particle acceleration, plasma-wave instabilities",
author = "Speirs, {D. C.} and K. Ronald and Phelps, {A. D. R.} and Koepke, {M. E.} and Cairns, {R. A.} and A. Rigby and F. Cruz and R. Trines and R. Bamford and Kellett, {B. J.} and B. Albertazzi and Cross, {J. E.} and F. Fraschetti and P. Graham and Kozlowski, {P. M.} and Y. Kuramitsu and F. Miniati and T. Morita and M. Oliver and B. Reville and Y. Sakawa and S. Sarkar and C. Spindloe and M. Koenig and Silva, {L. O.} and Lamb, {D. Q.} and P. Tzeferacos and S. Lebedev and G. Gregori and R. Bingham",
year = "2019",
month = "3",
day = "14",
doi = "10.1017/hpl.2019.3",
language = "English",
volume = "7",
journal = "High Power Laser Science and Engineering",
issn = "2095-4719",

}

Speirs, DC, Ronald, K, Phelps, ADR, Koepke, ME, Cairns, RA, Rigby, A, Cruz, F, Trines, R, Bamford, R, Kellett, BJ, Albertazzi, B, Cross, JE, Fraschetti, F, Graham, P, Kozlowski, PM, Kuramitsu, Y, Miniati, F, Morita, T, Oliver, M, Reville, B, Sakawa, Y, Sarkar, S, Spindloe, C, Koenig, M, Silva, LO, Lamb, DQ, Tzeferacos, P, Lebedev, S, Gregori, G & Bingham, R 2019, 'Maser radiation from collisionless shocks: application to astrophysical jets' High Power Laser Science and Engineering, vol. 7, e17. https://doi.org/10.1017/hpl.2019.3

Maser radiation from collisionless shocks : application to astrophysical jets. / Speirs, D. C.; Ronald, K.; Phelps, A. D. R.; Koepke, M. E.; Cairns, R. A.; Rigby, A.; Cruz, F.; Trines, R.; Bamford, R.; Kellett, B. J.; Albertazzi, B.; Cross, J. E.; Fraschetti, F.; Graham, P.; Kozlowski, P. M.; Kuramitsu, Y.; Miniati, F.; Morita, T.; Oliver, M.; Reville, B.; Sakawa, Y.; Sarkar, S.; Spindloe, C.; Koenig, M.; Silva, L. O.; Lamb, D. Q.; Tzeferacos, P.; Lebedev, S.; Gregori, G.; Bingham, R.

In: High Power Laser Science and Engineering, Vol. 7, e17, 14.03.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Maser radiation from collisionless shocks

T2 - High Power Laser Science and Engineering

AU - Speirs, D. C.

AU - Ronald, K.

AU - Phelps, A. D. R.

AU - Koepke, M. E.

AU - Cairns, R. A.

AU - Rigby, A.

AU - Cruz, F.

AU - Trines, R.

AU - Bamford, R.

AU - Kellett, B. J.

AU - Albertazzi, B.

AU - Cross, J. E.

AU - Fraschetti, F.

AU - Graham, P.

AU - Kozlowski, P. M.

AU - Kuramitsu, Y.

AU - Miniati, F.

AU - Morita, T.

AU - Oliver, M.

AU - Reville, B.

AU - Sakawa, Y.

AU - Sarkar, S.

AU - Spindloe, C.

AU - Koenig, M.

AU - Silva, L. O.

AU - Lamb, D. Q.

AU - Tzeferacos, P.

AU - Lebedev, S.

AU - Gregori, G.

AU - Bingham, R.

PY - 2019/3/14

Y1 - 2019/3/14

N2 - This paper describes a model of electron energization and cyclotron maser emission applicable to astrophysical magnetised collisionless shocks. It is motivated by the work of Begelman, Ergun and Rees [1] who argued that the cyclotron maser instability occurs in localised magnetised collisionless shocks such as those expected in Blazar jets. We report on recent research carried out to investigate electron acceleration at collisionless shocks and maser radiation associated with the accelerated electrons. We describe how electrons accelerated by lower-hybrid waves at collisionless shocks generate cyclotron maser radiation when the accelerated electrons move into regions of stronger magnetic fields. The electrons are accelerated along the magnetic field and magnetically compressed leading to the formation of an electron velocity distribution having a horseshoe shape due to conservation of the electron magnetic moment. Under certain conditions the horseshoe electron velocity distribution function is unstable to the cyclotron maser instability [2,3].

AB - This paper describes a model of electron energization and cyclotron maser emission applicable to astrophysical magnetised collisionless shocks. It is motivated by the work of Begelman, Ergun and Rees [1] who argued that the cyclotron maser instability occurs in localised magnetised collisionless shocks such as those expected in Blazar jets. We report on recent research carried out to investigate electron acceleration at collisionless shocks and maser radiation associated with the accelerated electrons. We describe how electrons accelerated by lower-hybrid waves at collisionless shocks generate cyclotron maser radiation when the accelerated electrons move into regions of stronger magnetic fields. The electrons are accelerated along the magnetic field and magnetically compressed leading to the formation of an electron velocity distribution having a horseshoe shape due to conservation of the electron magnetic moment. Under certain conditions the horseshoe electron velocity distribution function is unstable to the cyclotron maser instability [2,3].

KW - laboratory astrophysics

KW - plasma physics

KW - particle acceleration

KW - plasma-wave instabilities

UR - https://www.cambridge.org/core/journals/high-power-laser-science-and-engineering

U2 - 10.1017/hpl.2019.3

DO - 10.1017/hpl.2019.3

M3 - Article

VL - 7

JO - High Power Laser Science and Engineering

JF - High Power Laser Science and Engineering

SN - 2095-4719

M1 - e17

ER -