Abstract
Aiming to improve maritime safety, there is a need for a practical method that is capable of identifying the importance weightings for each contributing factor involved in accidents. Hence, Marine Accident Learning with Fuzzy Cognitive Maps (MALFCM) incorporated with Bayesian networks is suggested and applied in this study. MALFCM approach is based on the concept and principles of Fuzzy Cognitive Maps (FCMs) to represent the interrelations amongst accident contributor factors. Hence, in this study, grounding/stranding accidents were investigated with the proposed MALFCM approach. As a result, inadequate leadership and supervision, lack of training and unprofessional behavior were identified as the most probable causes of grounding accident. In addition, in the accident scenario analysis, it was observed that the lack of safety culture contributed most to the system failure based on the posterior to prior failures ratio.
Original language | English |
---|---|
Number of pages | 9 |
Publication status | Published - 15 Jul 2019 |
Event | 4th Workshop and Symposium on Safety and Integrity Management of Operations in Harsh Environments - St John's, Canada Duration: 15 Jul 2019 → 17 Jul 2019 Conference number: 4th |
Conference
Conference | 4th Workshop and Symposium on Safety and Integrity Management of Operations in Harsh Environments |
---|---|
Abbreviated title | CRISE4 |
Country/Territory | Canada |
City | St John's |
Period | 15/07/19 → 17/07/19 |
Keywords
- maritime accidents
- maritime safety
- Maritime Accident Learning with Fuzzy Cognitive Maps (MALFCMs)
- human factors
- Bayesian networks
Fingerprint
Dive into the research topics of 'Marine accident learning with fuzzy cognitive maps (MALFCMs) and Bayesian networks: a case study on maritime accidents'. Together they form a unique fingerprint.Prizes
-
Springer Award for Best Paper
Navas de Maya, B. (Recipient), Kurt, R. E. (Recipient) & Babaleye, A. (Recipient), Jul 2019
Prize: Prize (including medals and awards)