Main rotor-tail rotor intraction and its implications for helicopter directional control

Timothy M. Fletcher, R.E. Brown

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)
1911 Downloads (Pure)

Abstract

Aerodynamic interference between the main and tail rotor can have a strong negative influence on the flight mechanics of a conventional helicopter. Significant unsteadiness in the tail rotor loading is encountered under certain flight conditions, but the character of the unsteadiness can depend on the direction of rotation of the tail rotor. Numerical simulations, using Brown's vorticity transport model, of the aerodynamic interaction between the main and tail rotors of a helicopter are presented for a range of forward and lateral flight trajectories. Distinct differences are predicted in the behavior of the system in left and right sideward flight that are consistent with flight experience that the greatest fluctuations in loading or control input are required in left sideways flight (for a counterclockwise rotating main rotor). These fluctuations are generally more extreme for a system with tail rotor rotating top-forward than top-aft. Differences are also exposed in the character of the lateral excitation of the system as forward flight speed is varied. The observed behavior appears to originate in the disruption of the tail rotor wake that is induced by its entrainment into the wake of the main rotor. The extent of the disruption is dependent on flight condition, and the unsteadiness of the process depends on the direction of rotation of the tail rotor. In intermediate-speed forward flight and right sideward flight, the free stream delays the entrainment of the tail rotor wake far enough downstream for the perturbations to the rotor loading to be slight. Conversely, in left sideward and quartering flight, the free stream confines the entrainment process close to the rotors, where it causes significant unsteadiness in the loads produced by the system.
Original languageEnglish
Pages (from-to)125-138
Number of pages13
JournalJournal of the American Helicopter Society
Volume53
Issue number2
DOIs
Publication statusPublished - Apr 2008

Keywords

  • vorticity transport model
  • aerodynamic interaction
  • rotor wake

Fingerprint

Dive into the research topics of 'Main rotor-tail rotor intraction and its implications for helicopter directional control'. Together they form a unique fingerprint.

Cite this