Projects per year
Abstract
A magnetron injection gun (MIG) can generate an annular electron beam with a high transverse-to-axial velocity ratio for gyrotron devices. This article compares the different configurations of the MIGs and their suitable applications were analyzed from the theoretical study. Following that, an MIG for a 48-GHz, 2-MW output power gyroklystron was designed and optimized by parameterizing the MIG's geometry and the magnetic field. By using the standard triode-type configuration, a low alpha spread of 8.9% was achieved. The simulation results showed that the magnetic field profile also plays an important role in the MIG design. The angle of the magnetic field on the emitter surface affects the alpha value and the alpha spread, which was not able to be predicted by the synthesis method. It provides an extra degree of freedom for tuning the MIG's performance in the experiment where the geometry of the gun is fixed.
This work was supported in part by the Science and Technology Facilities Council (STFC), U.K., Cockcroft Institute Core, under Grant R160525-1, and in part by the U.K. Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/S00968X/1.
This work is supported in part by European Union (EU) Horizon 2020 Project “CompactLight” 2017-2021.
“CompactLight” grant code: 777431-XLS.
Published data November 2020, under Self-archiving / 'green' OA.
Original language | English |
---|---|
Pages (from-to) | 5151-5157 |
Number of pages | 7 |
Journal | IEEE Transactions on Electron Devices |
Volume | 67 |
Issue number | 11 |
Early online date | 30 Sept 2020 |
DOIs | |
Publication status | Published - Nov 2020 |
Keywords
- magnetron injection gun
- gyroklystron
- velocity spread
- small orbit beam
Fingerprint
Dive into the research topics of 'Magnetron injection gun for high-power gyroklystron'. Together they form a unique fingerprint.Projects
- 4 Finished
-
Sheet electron beam vacuum electronic devices for the generation of high power THz radiation
Cross, A. (Principal Investigator), He, W. (Co-investigator), Phelps, A. (Co-investigator) & Zhang, L. (Research Co-investigator)
EPSRC (Engineering and Physical Sciences Research Council)
5/03/19 → 4/03/21
Project: Research
-
Compact Light (XLS) H2020 INFRADEV-2016-2017
Cross, A. (Principal Investigator), Ronald, K. (Co-investigator) & Zhang, L. (Research Co-investigator)
European Commission - Horizon Europe + H2020
1/01/18 → 31/12/20
Project: Research
-
Doctoral Training Partnership (DTP 2016-2017 University of Strathclyde) | Nix, Laurence
Cross, A. (Principal Investigator), Zhang, L. (Co-investigator) & Nix, L. (Research Co-investigator)
EPSRC (Engineering and Physical Sciences Research Council)
1/10/17 → 19/10/21
Project: Research Studentship - Internally Allocated
Datasets
-
Data for: "Magnetron Injection Gun for high-power gyroklystron"
Zhang, L. (Creator), Cross, A. (Owner) & Nix, L. (Contributor), University of Strathclyde, 1 Jun 2021
DOI: 10.15129/48f5ca92-c244-4426-95d8-24a22fb60e08
Dataset
Research output
- 9 Citations
- 1 Article
-
Potentials of machine learning in vacuum electronic devices demonstrated by the design of a magnetron injection gun
Zhang, L. & Cross, A. W., 1 Jun 2021, In: IEEE Transactions on Electron Devices. 68, 6, p. 3028 - 3033 6 p.Research output: Contribution to journal › Article › peer-review
Open AccessFile5 Citations (Scopus)32 Downloads (Pure)