Magnetite-doped polydimethylsiloxane (PDMS) for phosphopeptide enrichment

Mairi E. Sandison, K. Tveen Jensen, F. Gesellchen, J. M. Cooper, A. R. Pitt

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)
86 Downloads (Pure)


Reversible phosphorylation plays a key role in numerous biological processes. Mass spectrometry-based approaches are commonly used to analyze protein phosphorylation, but such analysis is challenging, largely due to the low phosphorylation stoichiometry. Hence, a number of phosphopeptide enrichment strategies have been developed, including metal oxide affinity chromatography (MOAC). Here, we describe a new material for performing MOAC that employs a magnetite-doped polydimethylsiloxane (PDMS), that is suitable for the creation of microwell array and microfluidic systems to enable low volume, high throughput analysis. Incubation time and sample loading were explored and optimized and demonstrate that the embedded magnetite is able to enrich phosphopeptides. This substrate-based approach is rapid, straightforward and suitable for simultaneously performing multiple, low volume enrichments.
Original languageEnglish
Pages (from-to)4974-4981
Number of pages8
Issue number19
Early online date21 Jul 2014
Publication statusPublished - 7 Oct 2014


  • protein phosphorylation
  • phosphopeptide enrichment
  • photopolymerisation


Dive into the research topics of 'Magnetite-doped polydimethylsiloxane (PDMS) for phosphopeptide enrichment'. Together they form a unique fingerprint.

Cite this