TY - GEN
T1 - Machine learning-aided assessment of wind turbine energy losses due to blade leading edge damage
AU - Cavazzini, Anna
AU - Minisci, Edmondo
AU - Campobasso, M. Sergio
PY - 2019/12/13
Y1 - 2019/12/13
N2 - Estimating reliably and rapidly the losses of wind turbine annual energy production due to blade surface damage is essential for optimizing maintenance planning and, in the frequent case of leading edge erosion, assessing the need for protective coatings. These requirements prompted the development of the prototype system presented herein, using machine learning, wind turbine engineering codes and computational fluid dynamics to estimate wind turbine annual energy production losses due to blade leading edge damage. The power curve of a turbine with nominal or damaged blade surfaces is determined respectively with the open-source FAST and AeroDyn codes of the National Renewable Energy Laboratory, both using the blade element momentum theory for turbine aerodynamics. The loss prediction system is designed to map a given three-dimensional geometry of a damaged blade onto a damaged airfoil database, which, in this study, consists of 2700+ airfoil geometries, each analyzed with Navier-Stokes computational fluid dynamics over the working range of angles of attack. To avoid the need for lengthy aerodynamic analyses to assess losses due to damages monitored during turbine operation, the airfoil force data of a damaged turbine required by AeroDyn are rapidly obtained using a machine learning method trained using the pre-existing airfoil database. Presented results focus on the analysis of a utility-scale offshore wind turbine and demonstrate that realistic estimates of the annual energy production loss due to leading edge surface damage can be obtained in just a few seconds using a standard desktop computer, highlighting the viability and the industrial impact of this new technology for wind farm energy losses due to blade erosion.
AB - Estimating reliably and rapidly the losses of wind turbine annual energy production due to blade surface damage is essential for optimizing maintenance planning and, in the frequent case of leading edge erosion, assessing the need for protective coatings. These requirements prompted the development of the prototype system presented herein, using machine learning, wind turbine engineering codes and computational fluid dynamics to estimate wind turbine annual energy production losses due to blade leading edge damage. The power curve of a turbine with nominal or damaged blade surfaces is determined respectively with the open-source FAST and AeroDyn codes of the National Renewable Energy Laboratory, both using the blade element momentum theory for turbine aerodynamics. The loss prediction system is designed to map a given three-dimensional geometry of a damaged blade onto a damaged airfoil database, which, in this study, consists of 2700+ airfoil geometries, each analyzed with Navier-Stokes computational fluid dynamics over the working range of angles of attack. To avoid the need for lengthy aerodynamic analyses to assess losses due to damages monitored during turbine operation, the airfoil force data of a damaged turbine required by AeroDyn are rapidly obtained using a machine learning method trained using the pre-existing airfoil database. Presented results focus on the analysis of a utility-scale offshore wind turbine and demonstrate that realistic estimates of the annual energy production loss due to leading edge surface damage can be obtained in just a few seconds using a standard desktop computer, highlighting the viability and the industrial impact of this new technology for wind farm energy losses due to blade erosion.
KW - blades
KW - energy dissipation
KW - wind turbines
KW - blade damage
KW - erosion
KW - computational fluid dynamics
KW - renewable energy
KW - wind farms
U2 - 10.1115/IOWTC2019-7578
DO - 10.1115/IOWTC2019-7578
M3 - Conference contribution book
SN - 978-0-7918-5935-3
BT - ASME 2019 2nd International Offshore Wind Technical Conference
CY - [S.I.]
T2 - ASME 2019 2nd International Offshore Wind Technical Conference
Y2 - 3 November 2019 through 6 November 2019
ER -