Low-voltage high-transconductance dinaphtho-[2,3-b:2',3'-f]thieno [3,2-b]thiophene (DNTT) transistors on polyethylene naphthalate (PEN) foils

Research output: Contribution to conferenceProceeding

Abstract

Low threshold voltage, high transconductance DNTT transistors (OTFTs) with interdigitated source/drain contacts can provide low-voltage transistor amplifiers with a.c. cut-off frequency in excess of 10 kHz [1], making them suitable for wearable sensors. This paper presents an in-depth study of the geometry of such transistors fabricated on PEN. Changes in channel width-to-length ratio W/L were achieved by varying the W from ~12 to ~18 mm and L from 20 to 50 μm, leading to W/L of ~300 to ~900. The OTFTs exhibit threshold voltage from −0.33 to −0.74 V, field-effect mobility from 0.17 to 0.42 cm2/V·s, on-current from 28 to 67 μA (at VGS = VDS = −2 V), off-current from 6×10-12 to 7×10-8 A, and subthreshold slope from 65 to 266 mV/decade. While the OTFTs exhibit large on-state drain current and a.c. transconductance, smaller L leads to a slightly reduced mobility. In addition, the OTFTs with the largest W of 18.23 mm possess the lowest off-state drain current and subthreshold slope.

Conference

ConferenceIEEE International Conference on Flexible and Printable Sensors and Systems
Abbreviated titleIEEE FLEPS 2019
CountryUnited Kingdom
CityGlasgow
Period7/07/1910/07/19
Internet address

Fingerprint

Transconductance
Thiophene
Metal foil
Polyethylenes
Transistors
Drain current
Threshold voltage
Electric potential
Cutoff frequency
Geometry

Keywords

  • organic thin-film transistor
  • low-voltage
  • high transconductance

Cite this

@conference{d6f28ab9ce7b4d2296d4a8d12cb80dda,
title = "Low-voltage high-transconductance dinaphtho-[2,3-b:2',3'-f]thieno [3,2-b]thiophene (DNTT) transistors on polyethylene naphthalate (PEN) foils",
abstract = "Low threshold voltage, high transconductance DNTT transistors (OTFTs) with interdigitated source/drain contacts can provide low-voltage transistor amplifiers with a.c. cut-off frequency in excess of 10 kHz [1], making them suitable for wearable sensors. This paper presents an in-depth study of the geometry of such transistors fabricated on PEN. Changes in channel width-to-length ratio W/L were achieved by varying the W from ~12 to ~18 mm and L from 20 to 50 μm, leading to W/L of ~300 to ~900. The OTFTs exhibit threshold voltage from −0.33 to −0.74 V, field-effect mobility from 0.17 to 0.42 cm2/V·s, on-current from 28 to 67 μA (at VGS = VDS = −2 V), off-current from 6×10-12 to 7×10-8 A, and subthreshold slope from 65 to 266 mV/decade. While the OTFTs exhibit large on-state drain current and a.c. transconductance, smaller L leads to a slightly reduced mobility. In addition, the OTFTs with the largest W of 18.23 mm possess the lowest off-state drain current and subthreshold slope.",
keywords = "organic thin-film transistor, low-voltage, high transconductance",
author = "Ishaku, {Amayikai A.} and {Al Ruzaiqi}, Afra and Helena Gleskova",
note = "{\circledC} 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. ; IEEE International Conference on Flexible and Printable Sensors and Systems , IEEE FLEPS 2019 ; Conference date: 07-07-2019 Through 10-07-2019",
year = "2019",
month = "7",
day = "10",
language = "English",
url = "https://fleps2019.org/",

}

Ishaku, AA, Al Ruzaiqi, A & Gleskova, H 2019, 'Low-voltage high-transconductance dinaphtho-[2,3-b:2',3'-f]thieno [3,2-b]thiophene (DNTT) transistors on polyethylene naphthalate (PEN) foils' IEEE International Conference on Flexible and Printable Sensors and Systems , Glasgow, United Kingdom, 7/07/19 - 10/07/19, .

Low-voltage high-transconductance dinaphtho-[2,3-b:2',3'-f]thieno [3,2-b]thiophene (DNTT) transistors on polyethylene naphthalate (PEN) foils. / Ishaku, Amayikai A.; Al Ruzaiqi, Afra; Gleskova, Helena.

2019. IEEE International Conference on Flexible and Printable Sensors and Systems , Glasgow, United Kingdom.

Research output: Contribution to conferenceProceeding

TY - CONF

T1 - Low-voltage high-transconductance dinaphtho-[2,3-b:2',3'-f]thieno [3,2-b]thiophene (DNTT) transistors on polyethylene naphthalate (PEN) foils

AU - Ishaku, Amayikai A.

AU - Al Ruzaiqi, Afra

AU - Gleskova, Helena

N1 - © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

PY - 2019/7/10

Y1 - 2019/7/10

N2 - Low threshold voltage, high transconductance DNTT transistors (OTFTs) with interdigitated source/drain contacts can provide low-voltage transistor amplifiers with a.c. cut-off frequency in excess of 10 kHz [1], making them suitable for wearable sensors. This paper presents an in-depth study of the geometry of such transistors fabricated on PEN. Changes in channel width-to-length ratio W/L were achieved by varying the W from ~12 to ~18 mm and L from 20 to 50 μm, leading to W/L of ~300 to ~900. The OTFTs exhibit threshold voltage from −0.33 to −0.74 V, field-effect mobility from 0.17 to 0.42 cm2/V·s, on-current from 28 to 67 μA (at VGS = VDS = −2 V), off-current from 6×10-12 to 7×10-8 A, and subthreshold slope from 65 to 266 mV/decade. While the OTFTs exhibit large on-state drain current and a.c. transconductance, smaller L leads to a slightly reduced mobility. In addition, the OTFTs with the largest W of 18.23 mm possess the lowest off-state drain current and subthreshold slope.

AB - Low threshold voltage, high transconductance DNTT transistors (OTFTs) with interdigitated source/drain contacts can provide low-voltage transistor amplifiers with a.c. cut-off frequency in excess of 10 kHz [1], making them suitable for wearable sensors. This paper presents an in-depth study of the geometry of such transistors fabricated on PEN. Changes in channel width-to-length ratio W/L were achieved by varying the W from ~12 to ~18 mm and L from 20 to 50 μm, leading to W/L of ~300 to ~900. The OTFTs exhibit threshold voltage from −0.33 to −0.74 V, field-effect mobility from 0.17 to 0.42 cm2/V·s, on-current from 28 to 67 μA (at VGS = VDS = −2 V), off-current from 6×10-12 to 7×10-8 A, and subthreshold slope from 65 to 266 mV/decade. While the OTFTs exhibit large on-state drain current and a.c. transconductance, smaller L leads to a slightly reduced mobility. In addition, the OTFTs with the largest W of 18.23 mm possess the lowest off-state drain current and subthreshold slope.

KW - organic thin-film transistor

KW - low-voltage

KW - high transconductance

UR - https://fleps2019.org/

M3 - Proceeding

ER -