Low power wireless sensor network for building monitoring

Tom Torfs, Tom Sterken, Steven Brebels, Juan Santana, Richard van den Hoven, Vincent Spiering, Nicolas Bertsch, Davide Trapani, Daniele Zonta

Research output: Contribution to journalArticlepeer-review

153 Citations (Scopus)

Abstract

A wireless sensor network is proposed for monitoring buildings to assess earthquake damage. The sensor nodes use custom-developed capacitive microelectromechanical systems strain and 3-D acceleration sensors and a low power readout application-specified integrated circuit for a battery life of up to 12 years. The strain sensors are mounted at the base of the building to measure the settlement and plastic hinge activation of the building after an earthquake. They measure periodically or on-demand from the base station. The accelerometers are mounted at every floor of the building to measure the seismic response of the building during an earthquake. They record during an earthquake event using a combination of the local acceleration data and remote triggering from the base station based on the acceleration data from multiple sensors across the building. A low power network architecture was implemented over an 802.15.4 MAC in the 900-MHz band. A custom patch antenna was designed in this frequency band to obtain robust links in real-world conditions. The modules have been validated in a full-scale laboratory setup with simulated earthquakes.
Original languageEnglish
Pages (from-to)909-915
Number of pages7
JournalIEEE Sensors Journal
Volume13
Issue number3
Early online date29 Jan 2013
DOIs
Publication statusPublished - 1 Mar 2013

Keywords

  • microelectromechanical systems (MEMS)
  • remote monitoring
  • structural health monitoring
  • wireless sensor networks

Fingerprint

Dive into the research topics of 'Low power wireless sensor network for building monitoring'. Together they form a unique fingerprint.

Cite this