Low level laser therapy and tissue engineered skin substitutes: effect on the proliferation rate of 3T3 mouse fibroblast cells

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

With the rapid development of tissue engineering and gene therapy, collagen-based biomaterials are frequently used as cell transplant devices; an example is tissue-engineered skin substitutes. In this study of low level laser therapy (LLLT) we determined the influence of the irradiation and treatment parameters on the proliferation rate of 3T3 mouse fibroblast cells cultured on collagen-glycosaminoglycan (GAG) lattices and Petri dishes for up to 4 and 7 days respectively. Helium-Neon (He-Ne) laser at 1 - 4 J/cm2 was used to irradiate the cells. Using 5-carboxyfluorescein diacetate (CFDA) fluorescence, studies on the proliferation rate of irradiated cells before and after cell attachment, and on different treatment days were conducted. The viability of cells on collagen-GAG lattices were assessed using the MTT assay. It was found that in terms of cell proliferation, the cells irradiated at different fluences and treatment modes (at 3 J/cm2) showed no statistically significant difference from the control cells. Control cells on collagen-GAG lattices were found to be more viable than the irradiated cells. It was concluded that with existing experimental conditions, LLLT was found to have no statistically significant effect on the post-cell attachment proliferation and viability of 3T3 mouse fibroblast cells.
Original languageEnglish
JournalProceedings of SPIE: The International Society for Optical Engineering
Volume5610
Issue number124
DOIs
Publication statusPublished - 2004

Keywords

  • laser therapy
  • tissue engineering
  • skin substitutes
  • fibroblast cells
  • bioengineering

Fingerprint Dive into the research topics of 'Low level laser therapy and tissue engineered skin substitutes: effect on the proliferation rate of 3T3 mouse fibroblast cells'. Together they form a unique fingerprint.

  • Cite this