Abstract
A framework of local reduced-order modeling using machine learning algorithms is presented together with an approach to optimally select the snapshots for strongly nonlinear problems. By using an unsupervised learning algorithm, solutions are grouped into clusters of similar features. The input parameter space is divided into subregions by decision boundaries based on a supervised learning algorithm. Local reduced-order bases are extracted on each cluster, for which the solutions are represented as a linear combination of the basis vectors from their corresponding subregion. The proposed methodology is employed to conduct a comprehensive, exploration of the in-flight icing certification envelopes.
Original language | English |
---|---|
Pages (from-to) | 2174 - 2185 |
Number of pages | 10 |
Journal | AIAA Journal |
Volume | 53 |
Issue number | 8 |
Early online date | 24 Apr 2015 |
DOIs | |
Publication status | Published - 31 Aug 2015 |
Keywords
- machine learning algorithms
- in-flight icing
- vectors