Lithiations of mercaptoamines containing NC(S)NH–,–NHC(S)S– and –NHC(S)NH– units: syntheses, crystal structures and model molecular-orbital calculations

D R ARMSTRONG, Robert Mulvey, D BARR, R W PORTER, P R RAITHBY, T R E SIMPSON, R SNAITH, D S WRIGHT, K GREGORY, P MIKULCIK

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Three mercaptoamines have been lithiated in the presence of various Lewis bases. 2-Mercaptopyrimidine (I), containing a = NC(= S)NH- (as an amine)/ = NC(-SH)= N- (as a thiol) unit, affords [N activated = CHCH = CH(N..C..S)Li.hmpa]n 1. 2-Mercaptothiazoline (II), with a -SC(= S)NH-/-SC(-SH) = N- unit, gives [S activated CH2CH2(N..C..S)Li.tmen]n 2. 2-Mercaptobenzimidazole (III), having a -NHC(= S)NH-/-NHC(-SH) = N- unit, gives, when dilithiated, { activated C6H4[N..C(..S)..N]Li2.3hmpa}n 3 [hmpa = hexamethylphosphoramide, (Me2N)3P = O; tmen = Me2NCH2CH2NMe2]. The solid-state structures of complexes 1-3 were solved by X-ray crystallography. Complex 1 is polymeric (n = infinity): each unit contains a (N..C..S)Li chelate feature with a terminal hmpa molecule on Li, and these units are then associated via intermolecular N-->Li co-ordinations using the third (N) heteroatom of the organic anion. Complex 2 is a dimeric (n = 2) S-Li compound with each Li bearing a tmen molecule; dimerisation is achieved by N-->Li intermonomer interactions, but the third (ring S) heteroatom is not involved with metal centres. The dilithiated species 3 is also a dimer (n = 2) and each Li is chelated by an N..C..S unit of its organic dianion; the two end-Li atoms of the dimer are each co-ordinated to two terminal hmpa molecules, while the two central Li atoms are linked by two mu-hmpa molecules, which effect dimerisation. The structural diversities displayed by 1-3 have been probed, and thereby in part rationalised, by ab initio (6-31G basis set) and MNDO molecular-orbital calculations on the amine/thiol isomers of I-III, and on their uncomplexed and complexed lithiated derivatives (as monomers). In particular, the optimised structures predict and reproduce the (N..C..S)Li chelating modes found in 1 and 3, and help to explain why direct S-Li bonding is found in 2.

LanguageEnglish
Pages765-776
Number of pages12
JournalJournal of the Chemical Society, Dalton Transactions
Issue numberS
DOIs
Publication statusPublished - 1991

Fingerprint

Orbital calculations
Molecular orbitals
Crystal structure
Molecules
Dimerization
Sulfhydryl Compounds
Dimers
Amines
Bearings (structural)
Hempa
Lewis Bases
Atoms
X ray crystallography
Chelation
Isomers
Anions
Monomers
Metals
Derivatives

Keywords

  • arbinitio mo calculations
  • lithium amide chemistry
  • solid-state
  • basis sets
  • reactivity
  • energies
  • complexes
  • diphenylamide
  • aggregation
  • solvation

Cite this

ARMSTRONG, D R ; Mulvey, Robert ; BARR, D ; PORTER, R W ; RAITHBY, P R ; SIMPSON, T R E ; SNAITH, R ; WRIGHT, D S ; GREGORY, K ; MIKULCIK, P . / Lithiations of mercaptoamines containing NC(S)NH–,–NHC(S)S– and –NHC(S)NH– units: syntheses, crystal structures and model molecular-orbital calculations. In: Journal of the Chemical Society, Dalton Transactions. 1991 ; No. S. pp. 765-776.
@article{de98d070b8524224b0075df35143095b,
title = "Lithiations of mercaptoamines containing NC(S)NH–,–NHC(S)S– and –NHC(S)NH– units: syntheses, crystal structures and model molecular-orbital calculations",
abstract = "Three mercaptoamines have been lithiated in the presence of various Lewis bases. 2-Mercaptopyrimidine (I), containing a = NC(= S)NH- (as an amine)/ = NC(-SH)= N- (as a thiol) unit, affords [N activated = CHCH = CH(N..C..S)Li.hmpa]n 1. 2-Mercaptothiazoline (II), with a -SC(= S)NH-/-SC(-SH) = N- unit, gives [S activated CH2CH2(N..C..S)Li.tmen]n 2. 2-Mercaptobenzimidazole (III), having a -NHC(= S)NH-/-NHC(-SH) = N- unit, gives, when dilithiated, { activated C6H4[N..C(..S)..N]Li2.3hmpa}n 3 [hmpa = hexamethylphosphoramide, (Me2N)3P = O; tmen = Me2NCH2CH2NMe2]. The solid-state structures of complexes 1-3 were solved by X-ray crystallography. Complex 1 is polymeric (n = infinity): each unit contains a (N..C..S)Li chelate feature with a terminal hmpa molecule on Li, and these units are then associated via intermolecular N-->Li co-ordinations using the third (N) heteroatom of the organic anion. Complex 2 is a dimeric (n = 2) S-Li compound with each Li bearing a tmen molecule; dimerisation is achieved by N-->Li intermonomer interactions, but the third (ring S) heteroatom is not involved with metal centres. The dilithiated species 3 is also a dimer (n = 2) and each Li is chelated by an N..C..S unit of its organic dianion; the two end-Li atoms of the dimer are each co-ordinated to two terminal hmpa molecules, while the two central Li atoms are linked by two mu-hmpa molecules, which effect dimerisation. The structural diversities displayed by 1-3 have been probed, and thereby in part rationalised, by ab initio (6-31G basis set) and MNDO molecular-orbital calculations on the amine/thiol isomers of I-III, and on their uncomplexed and complexed lithiated derivatives (as monomers). In particular, the optimised structures predict and reproduce the (N..C..S)Li chelating modes found in 1 and 3, and help to explain why direct S-Li bonding is found in 2.",
keywords = "arbinitio mo calculations, lithium amide chemistry , solid-state, basis sets, reactivity, energies, complexes, diphenylamide, aggregation, solvation",
author = "ARMSTRONG, {D R} and Robert Mulvey and D BARR and PORTER, {R W} and RAITHBY, {P R} and SIMPSON, {T R E} and R SNAITH and WRIGHT, {D S} and K GREGORY and P MIKULCIK",
year = "1991",
doi = "10.1039/DT9910000765",
language = "English",
pages = "765--776",
journal = "Journal of the Chemical Society, Dalton Transactions",
issn = "0300-9246",
number = "S",

}

Lithiations of mercaptoamines containing NC(S)NH–,–NHC(S)S– and –NHC(S)NH– units: syntheses, crystal structures and model molecular-orbital calculations. / ARMSTRONG, D R ; Mulvey, Robert; BARR, D ; PORTER, R W ; RAITHBY, P R ; SIMPSON, T R E ; SNAITH, R ; WRIGHT, D S ; GREGORY, K ; MIKULCIK, P .

In: Journal of the Chemical Society, Dalton Transactions, No. S, 1991, p. 765-776.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Lithiations of mercaptoamines containing NC(S)NH–,–NHC(S)S– and –NHC(S)NH– units: syntheses, crystal structures and model molecular-orbital calculations

AU - ARMSTRONG, D R

AU - Mulvey, Robert

AU - BARR, D

AU - PORTER, R W

AU - RAITHBY, P R

AU - SIMPSON, T R E

AU - SNAITH, R

AU - WRIGHT, D S

AU - GREGORY, K

AU - MIKULCIK, P

PY - 1991

Y1 - 1991

N2 - Three mercaptoamines have been lithiated in the presence of various Lewis bases. 2-Mercaptopyrimidine (I), containing a = NC(= S)NH- (as an amine)/ = NC(-SH)= N- (as a thiol) unit, affords [N activated = CHCH = CH(N..C..S)Li.hmpa]n 1. 2-Mercaptothiazoline (II), with a -SC(= S)NH-/-SC(-SH) = N- unit, gives [S activated CH2CH2(N..C..S)Li.tmen]n 2. 2-Mercaptobenzimidazole (III), having a -NHC(= S)NH-/-NHC(-SH) = N- unit, gives, when dilithiated, { activated C6H4[N..C(..S)..N]Li2.3hmpa}n 3 [hmpa = hexamethylphosphoramide, (Me2N)3P = O; tmen = Me2NCH2CH2NMe2]. The solid-state structures of complexes 1-3 were solved by X-ray crystallography. Complex 1 is polymeric (n = infinity): each unit contains a (N..C..S)Li chelate feature with a terminal hmpa molecule on Li, and these units are then associated via intermolecular N-->Li co-ordinations using the third (N) heteroatom of the organic anion. Complex 2 is a dimeric (n = 2) S-Li compound with each Li bearing a tmen molecule; dimerisation is achieved by N-->Li intermonomer interactions, but the third (ring S) heteroatom is not involved with metal centres. The dilithiated species 3 is also a dimer (n = 2) and each Li is chelated by an N..C..S unit of its organic dianion; the two end-Li atoms of the dimer are each co-ordinated to two terminal hmpa molecules, while the two central Li atoms are linked by two mu-hmpa molecules, which effect dimerisation. The structural diversities displayed by 1-3 have been probed, and thereby in part rationalised, by ab initio (6-31G basis set) and MNDO molecular-orbital calculations on the amine/thiol isomers of I-III, and on their uncomplexed and complexed lithiated derivatives (as monomers). In particular, the optimised structures predict and reproduce the (N..C..S)Li chelating modes found in 1 and 3, and help to explain why direct S-Li bonding is found in 2.

AB - Three mercaptoamines have been lithiated in the presence of various Lewis bases. 2-Mercaptopyrimidine (I), containing a = NC(= S)NH- (as an amine)/ = NC(-SH)= N- (as a thiol) unit, affords [N activated = CHCH = CH(N..C..S)Li.hmpa]n 1. 2-Mercaptothiazoline (II), with a -SC(= S)NH-/-SC(-SH) = N- unit, gives [S activated CH2CH2(N..C..S)Li.tmen]n 2. 2-Mercaptobenzimidazole (III), having a -NHC(= S)NH-/-NHC(-SH) = N- unit, gives, when dilithiated, { activated C6H4[N..C(..S)..N]Li2.3hmpa}n 3 [hmpa = hexamethylphosphoramide, (Me2N)3P = O; tmen = Me2NCH2CH2NMe2]. The solid-state structures of complexes 1-3 were solved by X-ray crystallography. Complex 1 is polymeric (n = infinity): each unit contains a (N..C..S)Li chelate feature with a terminal hmpa molecule on Li, and these units are then associated via intermolecular N-->Li co-ordinations using the third (N) heteroatom of the organic anion. Complex 2 is a dimeric (n = 2) S-Li compound with each Li bearing a tmen molecule; dimerisation is achieved by N-->Li intermonomer interactions, but the third (ring S) heteroatom is not involved with metal centres. The dilithiated species 3 is also a dimer (n = 2) and each Li is chelated by an N..C..S unit of its organic dianion; the two end-Li atoms of the dimer are each co-ordinated to two terminal hmpa molecules, while the two central Li atoms are linked by two mu-hmpa molecules, which effect dimerisation. The structural diversities displayed by 1-3 have been probed, and thereby in part rationalised, by ab initio (6-31G basis set) and MNDO molecular-orbital calculations on the amine/thiol isomers of I-III, and on their uncomplexed and complexed lithiated derivatives (as monomers). In particular, the optimised structures predict and reproduce the (N..C..S)Li chelating modes found in 1 and 3, and help to explain why direct S-Li bonding is found in 2.

KW - arbinitio mo calculations

KW - lithium amide chemistry

KW - solid-state

KW - basis sets

KW - reactivity

KW - energies

KW - complexes

KW - diphenylamide

KW - aggregation

KW - solvation

U2 - 10.1039/DT9910000765

DO - 10.1039/DT9910000765

M3 - Article

SP - 765

EP - 776

JO - Journal of the Chemical Society, Dalton Transactions

T2 - Journal of the Chemical Society, Dalton Transactions

JF - Journal of the Chemical Society, Dalton Transactions

SN - 0300-9246

IS - S

ER -