Linear matching method for ratchet limit prediction in comparison to Rolls Royce's Hierarchical Finite Element Framework

Michael Lytwyn, Haofeng Chen, Michael Martin

Research output: Contribution to conferencePaper

88 Downloads (Pure)

Abstract

This paper provides a direct comparison between the Linear Matching Method (LMM) and the procedures currently being employed within Rolls-Royce Power Engineering plc Hierarchical Finite Element Framework (HFEF) for the assessment of shakedown and ratcheting behaviour. These methods include the application of Direct Cyclic Analysis (DCA), utilised in an automated search procedure for load-interaction plot generation and the recently developed Hybrid procedure. The Hybrid procedure is based on a similar premise to the LMM in that the load history can be decomposed into cyclic and constant components. The LMM allows for the direct evaluation of shakedown and ratchet limits to be obtained in a traditional Bree load-interaction format, along with the subsequent maximum plastic strain range for low-cycle fatigue considerations. Three problems have been used for comparison in this paper; the classic Bree cylinder, a nozzle-in-sphere with a cold media injection transient typical of nuclear power plant loading and a pressurised two-bar structure for multi-axial failure analysis. The accuracy of each method has been verified using Abaqus step-by-step inelastic analysis. The variations in the implementation strategies associated with each method have also been discussed along with computational efficiency and effectiveness.
Original languageEnglish
Number of pages14
Publication statusPublished - 20 May 2012
Event13th International Conference on Pressure Vessel Technology - London, United Kingdom
Duration: 20 May 201223 May 2012

Conference

Conference13th International Conference on Pressure Vessel Technology
Country/TerritoryUnited Kingdom
CityLondon
Period20/05/1223/05/12

Keywords

  • linear matching method
  • ratchet limit
  • finite element analysis
  • shakedown
  • direct cyclic analysis

Fingerprint

Dive into the research topics of 'Linear matching method for ratchet limit prediction in comparison to Rolls Royce's Hierarchical Finite Element Framework'. Together they form a unique fingerprint.

Cite this