TY - JOUR
T1 - Learning polar encodings for arbitrary-oriented ship detection in SAR images
AU - He, Yishan
AU - Gao, Fei
AU - Wang, Jun
AU - Hussain, Amir
AU - Yang, Erfu
AU - Zhou, Huiyu
N1 - © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
PY - 2021/3/24
Y1 - 2021/3/24
N2 - Common horizontal bounding box-based methods are not capable of accurately locating slender ship targets with arbitrary orientations in synthetic aperture radar (SAR) images. Therefore, in recent years, methods based on oriented bounding box (OBB) have gradually received attention from researchers. However, most of the recently proposed deep learning-based methods for OBB detection encounter the boundary discontinuity problem in angle or key point regression. In order to alleviate this problem, researchers propose to introduce some manually set parameters or extra network branches for distinguishing the boundary cases, which make training more difficult and lead to performance degradation. In this article, in order to solve the boundary discontinuity problem in OBB regression, we propose to detect SAR ships by learning polar encodings. The encoding scheme uses a group of vectors pointing from the center of the ship target to the boundary points to represent an OBB. The boundary discontinuity problem is avoided by training and inference directly according to the polar encodings. In addition, we propose an intersect over union (IOU)-weighted regression loss, which further guides the training of polar encodings through the IOU metric and improves the detection performance. Comparative experiments on the benchmark Rotating SAR Ship Detection Dataset (RSSDD) demonstrate the effectiveness of our proposed method in terms of enhanced detection performance over state-of-the-art algorithms and other OBB encoding schemes.
AB - Common horizontal bounding box-based methods are not capable of accurately locating slender ship targets with arbitrary orientations in synthetic aperture radar (SAR) images. Therefore, in recent years, methods based on oriented bounding box (OBB) have gradually received attention from researchers. However, most of the recently proposed deep learning-based methods for OBB detection encounter the boundary discontinuity problem in angle or key point regression. In order to alleviate this problem, researchers propose to introduce some manually set parameters or extra network branches for distinguishing the boundary cases, which make training more difficult and lead to performance degradation. In this article, in order to solve the boundary discontinuity problem in OBB regression, we propose to detect SAR ships by learning polar encodings. The encoding scheme uses a group of vectors pointing from the center of the ship target to the boundary points to represent an OBB. The boundary discontinuity problem is avoided by training and inference directly according to the polar encodings. In addition, we propose an intersect over union (IOU)-weighted regression loss, which further guides the training of polar encodings through the IOU metric and improves the detection performance. Comparative experiments on the benchmark Rotating SAR Ship Detection Dataset (RSSDD) demonstrate the effectiveness of our proposed method in terms of enhanced detection performance over state-of-the-art algorithms and other OBB encoding schemes.
KW - arbitrary-orientated
KW - polar encodings
KW - ship detection
KW - synthetic aperture radar (SAR)
U2 - 10.1109/JSTARS.2021.3068530
DO - 10.1109/JSTARS.2021.3068530
M3 - Article
AN - SCOPUS:85103262425
SN - 1939-1404
VL - 14
SP - 3846
EP - 3859
JO - IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
JF - IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
ER -