Learning polar encodings for arbitrary-oriented ship detection in SAR images

Yishan He, Fei Gao*, Jun Wang, Amir Hussain, Erfu Yang, Huiyu Zhou

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

40 Citations (Scopus)
24 Downloads (Pure)

Abstract

Common horizontal bounding box-based methods are not capable of accurately locating slender ship targets with arbitrary orientations in synthetic aperture radar (SAR) images. Therefore, in recent years, methods based on oriented bounding box (OBB) have gradually received attention from researchers. However, most of the recently proposed deep learning-based methods for OBB detection encounter the boundary discontinuity problem in angle or key point regression. In order to alleviate this problem, researchers propose to introduce some manually set parameters or extra network branches for distinguishing the boundary cases, which make training more difficult and lead to performance degradation. In this article, in order to solve the boundary discontinuity problem in OBB regression, we propose to detect SAR ships by learning polar encodings. The encoding scheme uses a group of vectors pointing from the center of the ship target to the boundary points to represent an OBB. The boundary discontinuity problem is avoided by training and inference directly according to the polar encodings. In addition, we propose an intersect over union (IOU)-weighted regression loss, which further guides the training of polar encodings through the IOU metric and improves the detection performance. Comparative experiments on the benchmark Rotating SAR Ship Detection Dataset (RSSDD) demonstrate the effectiveness of our proposed method in terms of enhanced detection performance over state-of-the-art algorithms and other OBB encoding schemes.

Original languageEnglish
Pages (from-to)3846-3859
Number of pages14
Journal IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Volume14
DOIs
Publication statusPublished - 24 Mar 2021

Keywords

  • arbitrary-orientated
  • polar encodings
  • ship detection
  • synthetic aperture radar (SAR)

Fingerprint

Dive into the research topics of 'Learning polar encodings for arbitrary-oriented ship detection in SAR images'. Together they form a unique fingerprint.

Cite this