Laser ultrasonics for detection of elastic nonlinearity using collinear mixing of surface acoustic waves

S. D. Sharpies, T. Stratoudaki, R. J. Ellwood, I. J. Collison, M. Clark, M. G. Somekh

Research output: Chapter in Book/Report/Conference proceedingConference contribution book


The inherent material nonlinearity of many materials leads to deviation from Hooke's law, as the elastic moduli are not constant under applied stress. Acoustic waves traveling in the material are sensitive to changes in the elastic moduli, and this sensitivity can be used as a metric of intrinsic material nonlinearity. As static stressing of a component is in most cases impractical, an alternative technique, explored here, is to use a large amplitude surface acoustic wave (SAW) "pump" to generate stresses which propagate along the surface of a sample. A laser generated high frequency tone burst SAW "probe" is co-propagated with the pump, and is subject to the same stress as it propagates; the stress will be determined by both the height of the pump and the relative position of the probe with respect to the pump, which we can adjust. This collinear mixing results in a small change in the velocity of the probe wave, which is detected using another laser. By relating the change of velocity to the applied stress, a measure of the material's intrinsic nonlinearity can be obtained. We present quantitative measurements relating to material characterization, and implications for its use in damage detection are discussed.

Original languageEnglish
Title of host publicationReview of Progress in Quantitative Nondestructive Evaluation
EditorsDonald O. Thompson, Dale E. Chimenti
Place of PublicationMelville, NY
Number of pages8
Publication statusPublished - 22 Feb 2010
Externally publishedYes
Event36th Annual Review of Progress in Quantitative Nondestructive Evaluation, QNDE - Kingston, RI, United States
Duration: 26 Jul 200931 Jul 2009

Publication series

NameAIP Conference Proceedings


Conference36th Annual Review of Progress in Quantitative Nondestructive Evaluation, QNDE
CountryUnited States
CityKingston, RI


  • laser ultrasonics
  • material nonlinearity
  • nonlinear ultrasonics

Cite this