TY - JOUR
T1 - Laser pulse compression towards collapse and beyond in plasma
AU - Wilson, Thomas Cunningham
AU - Li, Fei-yu
AU - Weng, Su-Ming
AU - Chen, Min
AU - McKenna, Paul
AU - Sheng, Zheng-Ming
PY - 2019/2/13
Y1 - 2019/2/13
N2 - The dynamics of three-dimensional (3D) compression of ultrashort intense laser pulses in plasma is investigated theoretically and numerically. Starting from the slowly-varying envelope model, we derive equations describing the spatiotemporal evolution of a short laser pulse towards the singularity, or collapse, based on the variational method. In particular, the laser and plasma conditions leading to spherical compression are obtained. 3D particle-in-cell simulations are carried out to verify these conditions, which also enable one to examine the physical processes both towards and beyond the pulse collapse. Simulations suggest that the laser pulse can be spherically compressed down to a minimum size of the order of the laser wavelength, the so called lambda-cubic regime. The compression process develops over twice as fast in simulation than is predicted by the envelope model, due to the simplified nature of the latter. The final result of this process is pulse collapse, which is accompanied with strong plasma density modulation and spectrum broadening. The collapse can occur multiple times during the laser pulse propagation, until a significant part of the pulse energy is dissipated to electron acceleration by the laser ponderomitve force. It is also shown that a strong external DC magnetic field applied along the laser propagation direction can enhance the rate of compression for circularly-polarised laser pulses, when compared to an unmagnetised plasma, allowing access to strong compression and focusing in the low-density and low-amplitude regime.
AB - The dynamics of three-dimensional (3D) compression of ultrashort intense laser pulses in plasma is investigated theoretically and numerically. Starting from the slowly-varying envelope model, we derive equations describing the spatiotemporal evolution of a short laser pulse towards the singularity, or collapse, based on the variational method. In particular, the laser and plasma conditions leading to spherical compression are obtained. 3D particle-in-cell simulations are carried out to verify these conditions, which also enable one to examine the physical processes both towards and beyond the pulse collapse. Simulations suggest that the laser pulse can be spherically compressed down to a minimum size of the order of the laser wavelength, the so called lambda-cubic regime. The compression process develops over twice as fast in simulation than is predicted by the envelope model, due to the simplified nature of the latter. The final result of this process is pulse collapse, which is accompanied with strong plasma density modulation and spectrum broadening. The collapse can occur multiple times during the laser pulse propagation, until a significant part of the pulse energy is dissipated to electron acceleration by the laser ponderomitve force. It is also shown that a strong external DC magnetic field applied along the laser propagation direction can enhance the rate of compression for circularly-polarised laser pulses, when compared to an unmagnetised plasma, allowing access to strong compression and focusing in the low-density and low-amplitude regime.
KW - plasma
KW - laser
KW - self-focusing
KW - self-compression
U2 - 10.1088/1361-6455/ab0132
DO - 10.1088/1361-6455/ab0132
M3 - Article
SN - 0953-4075
VL - 52
JO - Journal of Physics B: Atomic, Molecular and Optical Physics
JF - Journal of Physics B: Atomic, Molecular and Optical Physics
IS - 5
M1 - 055403
ER -