Projects per year
Abstract
A family of star-shaped conjugated oligofluorene molecules based around a central benzene core is studied with the aim of identifying how changes in molecular structure can affect the laser performance of organic materials. As the oligofluorene arm length increases the optical transitions are found to move to longer wavelength, there is an increase in photoluminescence quantum yield and a corresponding reduction in the excitation density for amplified spontaneous emission. Distributed-feedback lasers based on these materials are tunable across 402-462 nm with lasing thresholds as low as 1.1 kW cm(-2) and efficiencies as high as 6.6%. The laser performance is compared with that of family of star-shaped molecules with different core structure. This shows that a reduction in intermolecular interactions is very important to achieving high performance lasing in organic semiconductors.
Original language | English |
---|---|
Article number | 094005 |
Number of pages | 6 |
Journal | Semiconductor Science and Technology |
Volume | 27 |
Issue number | 9 |
DOIs | |
Publication status | Published - 1 Sept 2012 |
Keywords
- polymers
- organics
- laser characteristics
- phosphorescence spectra
- quantum optics
- lasers
Fingerprint
Dive into the research topics of 'Laser characteristics of a family of benzene-cored star-shaped oligofluorenes'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Hybrid organic semiconductor / gallium nitride / CMOS smart pixels arrays
Dawson, M., Girkin, J., Gu, E., Pethrick, R., Skabara, P. & Watson, I.
EPSRC (Engineering and Physical Sciences Research Council)
1/08/08 → 30/09/12
Project: Research