Abstract
Internal oxidation of three Mn-steel alloys with 1.7, 3.5 and 7.0 wt% Mn concentration at 950 °C in a gas mixture composed of nitrogen, hydrogen and water vapor with a dew point of +10°C was evaluated. For these alloys, the kinetics of internal oxidation are diffusion-controlled and obey parabolic growth rate law. The diffusion coefficient of oxygen and manganese determined from the observed internal oxidation kinetics are 3.35 × 10−7 and 4.14 × 10−12cm2/s at 950 °C, respectively. The formed internal oxide precipitates are mainly composed of MnO. The solubility product of MnO in an austenitic iron matrix is estimated to be (7.66 ± 0.18) × 10−9 mol fraction2 at 950 °C. The numerical simulation of concentration depth profiles of precipitated oxygen is in agreement with depth profiles determined with image analysis and X-ray microanalysis. Validity of the numerical simulation in case of the phase transformation was also tested. When a 1.7 wt% Mn-steel alloy is oxidized at 850 °C (instead of 950 °C) with a dew point of +12 °C partial phase transformation from austenite to ferrite takes place due to the Mn depletion. The associated precipitated oxygen concentration depth profile can be predicted accurately with numerical simulation.
Original language | English |
---|---|
Pages (from-to) | 249-269 |
Number of pages | 21 |
Journal | Oxidation of Metals |
Volume | 82 |
Issue number | 3-4 |
Early online date | 9 Jul 2014 |
DOIs | |
Publication status | Published - 31 Oct 2014 |
Keywords
- diffusion coefficient of manganese
- diffusion coefficient of oxygen
- internal oxidation
- kinetics
- MnO solubility product
- modelling