Isolation, characterisation, and solution structures of the bis(pyridine) complex of the n-butyllithium-pyridine adduct, Bun(C5H5N)Li·2C5H5N, its mode of decomposition, and ab initio calculations on model systems

D R ARMSTRONG, Robert Mulvey, D BARR, R SNAITH, D REED

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

The complexed adduct, Bun(C5H5N)Li·2C5H5N (3) has been isolated from the reaction of BunLi with a 3-fold molar excess of pyridine, and characterised fully by analysis and by 1H, 13C NMR spectroscopy. Ab initio calculations on model systems have shown that the formation of 3 probably involves initial complexation of the organolithium to the pyridine nitrogen atom, and that subsequent addition to the aromatic ring is aided by the presence of donor (pyridine) molecules. Cryoscopic molecular mass measurements imply that adduct 3 is essentially monomeric in arene solution, so that the 1/1/1 7Li NMR resonances observed at low temperatures can be provisionally attributed to conformers arising due to the presence of chiral (BunC5H5N)-nitrogen and -C(2) centres. High-field 1H NMR spectra of solutions of 3 of various ages and of various thermal/photochemical histories have shown that conversion of 3 into 2-butylpyridine (1) proceeds at least in part via hydrolysis to 1,2-dihydro-2-butylpyridine (4).
LanguageEnglish
Pages191-205
Number of pages15
JournalJournal of Organometallic Chemistry
Volume350
Issue number2
DOIs
Publication statusPublished - 9 Aug 1988

Fingerprint

Pyridine
adducts
isolation
pyridines
Decomposition
decomposition
nuclear magnetic resonance
Nitrogen
Nuclear magnetic resonance
Molecular mass
Complexation
nitrogen atoms
Nuclear magnetic resonance spectroscopy
hydrolysis
Hydrolysis
Magnetic Resonance Spectroscopy
Hot Temperature
histories
nitrogen
Atoms

Keywords

  • solution structures
  • bis(pyridine) complex
  • model systems

Cite this

@article{38568828625a48a0b3457d6038f0196a,
title = "Isolation, characterisation, and solution structures of the bis(pyridine) complex of the n-butyllithium-pyridine adduct, Bun(C5H5N)Li·2C5H5N, its mode of decomposition, and ab initio calculations on model systems",
abstract = "The complexed adduct, Bun(C5H5N)Li·2C5H5N (3) has been isolated from the reaction of BunLi with a 3-fold molar excess of pyridine, and characterised fully by analysis and by 1H, 13C NMR spectroscopy. Ab initio calculations on model systems have shown that the formation of 3 probably involves initial complexation of the organolithium to the pyridine nitrogen atom, and that subsequent addition to the aromatic ring is aided by the presence of donor (pyridine) molecules. Cryoscopic molecular mass measurements imply that adduct 3 is essentially monomeric in arene solution, so that the 1/1/1 7Li NMR resonances observed at low temperatures can be provisionally attributed to conformers arising due to the presence of chiral (BunC5H5N)-nitrogen and -C(2) centres. High-field 1H NMR spectra of solutions of 3 of various ages and of various thermal/photochemical histories have shown that conversion of 3 into 2-butylpyridine (1) proceeds at least in part via hydrolysis to 1,2-dihydro-2-butylpyridine (4).",
keywords = "solution structures , bis(pyridine) complex , model systems",
author = "ARMSTRONG, {D R} and Robert Mulvey and D BARR and R SNAITH and D REED",
year = "1988",
month = "8",
day = "9",
doi = "10.1016/0022-328X(88)80375-9",
language = "English",
volume = "350",
pages = "191--205",
journal = "Journal of Organometallic Chemistry",
issn = "0022-328X",
number = "2",

}

TY - JOUR

T1 - Isolation, characterisation, and solution structures of the bis(pyridine) complex of the n-butyllithium-pyridine adduct, Bun(C5H5N)Li·2C5H5N, its mode of decomposition, and ab initio calculations on model systems

AU - ARMSTRONG, D R

AU - Mulvey, Robert

AU - BARR, D

AU - SNAITH, R

AU - REED, D

PY - 1988/8/9

Y1 - 1988/8/9

N2 - The complexed adduct, Bun(C5H5N)Li·2C5H5N (3) has been isolated from the reaction of BunLi with a 3-fold molar excess of pyridine, and characterised fully by analysis and by 1H, 13C NMR spectroscopy. Ab initio calculations on model systems have shown that the formation of 3 probably involves initial complexation of the organolithium to the pyridine nitrogen atom, and that subsequent addition to the aromatic ring is aided by the presence of donor (pyridine) molecules. Cryoscopic molecular mass measurements imply that adduct 3 is essentially monomeric in arene solution, so that the 1/1/1 7Li NMR resonances observed at low temperatures can be provisionally attributed to conformers arising due to the presence of chiral (BunC5H5N)-nitrogen and -C(2) centres. High-field 1H NMR spectra of solutions of 3 of various ages and of various thermal/photochemical histories have shown that conversion of 3 into 2-butylpyridine (1) proceeds at least in part via hydrolysis to 1,2-dihydro-2-butylpyridine (4).

AB - The complexed adduct, Bun(C5H5N)Li·2C5H5N (3) has been isolated from the reaction of BunLi with a 3-fold molar excess of pyridine, and characterised fully by analysis and by 1H, 13C NMR spectroscopy. Ab initio calculations on model systems have shown that the formation of 3 probably involves initial complexation of the organolithium to the pyridine nitrogen atom, and that subsequent addition to the aromatic ring is aided by the presence of donor (pyridine) molecules. Cryoscopic molecular mass measurements imply that adduct 3 is essentially monomeric in arene solution, so that the 1/1/1 7Li NMR resonances observed at low temperatures can be provisionally attributed to conformers arising due to the presence of chiral (BunC5H5N)-nitrogen and -C(2) centres. High-field 1H NMR spectra of solutions of 3 of various ages and of various thermal/photochemical histories have shown that conversion of 3 into 2-butylpyridine (1) proceeds at least in part via hydrolysis to 1,2-dihydro-2-butylpyridine (4).

KW - solution structures

KW - bis(pyridine) complex

KW - model systems

U2 - 10.1016/0022-328X(88)80375-9

DO - 10.1016/0022-328X(88)80375-9

M3 - Article

VL - 350

SP - 191

EP - 205

JO - Journal of Organometallic Chemistry

T2 - Journal of Organometallic Chemistry

JF - Journal of Organometallic Chemistry

SN - 0022-328X

IS - 2

ER -