Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer

Alexander Y. Piggott, Jesse Lu, Konstantinos G. Lagoudakis, Jan Petykiewicz, Thomas M. Babinec, Jelena Vučković

Research output: Contribution to journalArticlepeer-review

876 Citations (Scopus)

Abstract

Integrated photonic devices are poised to play a key role in a wide variety of applications, ranging from optical interconnects and sensors to quantum computing. However, only a small library of semi-analytically designed devices is currently known. Here, we demonstrate the use of an inverse design method that explores the full design space of fabricable devices and allows us to design devices with previously unattainable functionality, higher performance and robustness, and smaller footprints than conventional devices. We have designed a silicon wavelength demultiplexer that splits 1,300 nm and 1,550 nm light from an input waveguide into two output waveguides, and fabricated and characterized several devices. The devices display low insertion loss (∼2 dB), low crosstalk (textless−11 dB) and wide bandwidths (textgreater100 nm). The device footprint is 2.8 × 2.8 μm2, making this the smallest dielectric wavelength splitter.
Original languageEnglish
Pages (from-to)374-377
Number of pages4
JournalNature Photonics
Volume9
Issue number6
DOIs
Publication statusPublished - 11 May 2015

Keywords

  • linear optical devices
  • photonics
  • quantum computing

Fingerprint

Dive into the research topics of 'Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer'. Together they form a unique fingerprint.

Cite this