Introduction to the special issue: historical and projected climatic changes to Australian natural hazards

Seth Westra, Christopher J. White, Anthony S. Kiem

Research output: Contribution to journalEditorial

7 Citations (Scopus)

Abstract

Australia’s size and varied climates mean that it is affected by a range of weather-related natural hazards, including tropical and extra-tropical storms and associated extreme wind and hail, coastal and inland floods, heatwaves and bushfires. These hazards cause multiple human and environmental impacts, and collectively account for 93 % of Australian insured losses (Schuster 2013). In addition, drought—often treated distinctly from other hazards due to its more gradual onset—can cause substantial reductions in agricultural productivity, and places stress on municipal and industrial water resources and natural ecosystems.

Evidence is building that the frequency and cost of natural hazards are increasing both in Australia (Insurance Council of Australia 2013; Schuster 2013) and globally (Munich Re 2014). However, understanding the cause of these changes has proved to be difficult, with increases in reporting rates (Munich Re 2014), changes in societal exposure and vulnerability (Bouwer 2011; Neumayer and Barthel 2011) and anthropogenic climate change (IPCC 2013) all potentially playing a role in explaining the observed changes. Yet although the potential causes are many, correct attribution of the observed changes is necessary in order to identify appropriate policy responses, and to predict how the frequency and severity of natural hazards might change in the future.

This Special Issue focuses on the specific role of large-scale climatic changes on the observed and future incidence of Australian natural hazards. The Special Issue is divided into seven papers, each covering a major class of climate-influenced natural hazard: floods, drought, storms (including wind and hail), coastal extremes, bushfires, heatwaves and frost. The work was initiated by the Working Group on Trends and Extremes from the Australian Water and Energy Exchanges (OzEWEX) initiative, which is a regional hydroclimate project run under the auspices of the Global Energy and Water Exchanges (GEWEX) initiative.
LanguageEnglish
Pages1-19
Number of pages19
JournalClimatic Change
Volume139
Issue number1
Early online date21 Oct 2016
DOIs
Publication statusPublished - 30 Nov 2016

Fingerprint

natural hazard
Hazards
climate change
hail
Drought
Precipitation (meteorology)
drought
hazard
climate
water exchange
frost
anthropogenic effect
energy
vulnerability
environmental impact
Insurance
water resource
Water resources
Climate change
weather

Keywords

  • climate change
  • Australia
  • natural harazrds

Cite this

@article{38e615b917cc433297f6f4eb5ccd2b70,
title = "Introduction to the special issue: historical and projected climatic changes to Australian natural hazards",
abstract = "Australia’s size and varied climates mean that it is affected by a range of weather-related natural hazards, including tropical and extra-tropical storms and associated extreme wind and hail, coastal and inland floods, heatwaves and bushfires. These hazards cause multiple human and environmental impacts, and collectively account for 93 {\%} of Australian insured losses (Schuster 2013). In addition, drought—often treated distinctly from other hazards due to its more gradual onset—can cause substantial reductions in agricultural productivity, and places stress on municipal and industrial water resources and natural ecosystems.Evidence is building that the frequency and cost of natural hazards are increasing both in Australia (Insurance Council of Australia 2013; Schuster 2013) and globally (Munich Re 2014). However, understanding the cause of these changes has proved to be difficult, with increases in reporting rates (Munich Re 2014), changes in societal exposure and vulnerability (Bouwer 2011; Neumayer and Barthel 2011) and anthropogenic climate change (IPCC 2013) all potentially playing a role in explaining the observed changes. Yet although the potential causes are many, correct attribution of the observed changes is necessary in order to identify appropriate policy responses, and to predict how the frequency and severity of natural hazards might change in the future.This Special Issue focuses on the specific role of large-scale climatic changes on the observed and future incidence of Australian natural hazards. The Special Issue is divided into seven papers, each covering a major class of climate-influenced natural hazard: floods, drought, storms (including wind and hail), coastal extremes, bushfires, heatwaves and frost. The work was initiated by the Working Group on Trends and Extremes from the Australian Water and Energy Exchanges (OzEWEX) initiative, which is a regional hydroclimate project run under the auspices of the Global Energy and Water Exchanges (GEWEX) initiative.",
keywords = "climate change, Australia, natural harazrds",
author = "Seth Westra and White, {Christopher J.} and Kiem, {Anthony S.}",
year = "2016",
month = "11",
day = "30",
doi = "10.1007/s10584-016-1826-7",
language = "English",
volume = "139",
pages = "1--19",
journal = "Climatic change",
issn = "0165-0009",
number = "1",

}

Introduction to the special issue : historical and projected climatic changes to Australian natural hazards. / Westra, Seth; White, Christopher J.; Kiem, Anthony S.

In: Climatic Change, Vol. 139, No. 1, 30.11.2016, p. 1-19.

Research output: Contribution to journalEditorial

TY - JOUR

T1 - Introduction to the special issue

T2 - Climatic change

AU - Westra, Seth

AU - White, Christopher J.

AU - Kiem, Anthony S.

PY - 2016/11/30

Y1 - 2016/11/30

N2 - Australia’s size and varied climates mean that it is affected by a range of weather-related natural hazards, including tropical and extra-tropical storms and associated extreme wind and hail, coastal and inland floods, heatwaves and bushfires. These hazards cause multiple human and environmental impacts, and collectively account for 93 % of Australian insured losses (Schuster 2013). In addition, drought—often treated distinctly from other hazards due to its more gradual onset—can cause substantial reductions in agricultural productivity, and places stress on municipal and industrial water resources and natural ecosystems.Evidence is building that the frequency and cost of natural hazards are increasing both in Australia (Insurance Council of Australia 2013; Schuster 2013) and globally (Munich Re 2014). However, understanding the cause of these changes has proved to be difficult, with increases in reporting rates (Munich Re 2014), changes in societal exposure and vulnerability (Bouwer 2011; Neumayer and Barthel 2011) and anthropogenic climate change (IPCC 2013) all potentially playing a role in explaining the observed changes. Yet although the potential causes are many, correct attribution of the observed changes is necessary in order to identify appropriate policy responses, and to predict how the frequency and severity of natural hazards might change in the future.This Special Issue focuses on the specific role of large-scale climatic changes on the observed and future incidence of Australian natural hazards. The Special Issue is divided into seven papers, each covering a major class of climate-influenced natural hazard: floods, drought, storms (including wind and hail), coastal extremes, bushfires, heatwaves and frost. The work was initiated by the Working Group on Trends and Extremes from the Australian Water and Energy Exchanges (OzEWEX) initiative, which is a regional hydroclimate project run under the auspices of the Global Energy and Water Exchanges (GEWEX) initiative.

AB - Australia’s size and varied climates mean that it is affected by a range of weather-related natural hazards, including tropical and extra-tropical storms and associated extreme wind and hail, coastal and inland floods, heatwaves and bushfires. These hazards cause multiple human and environmental impacts, and collectively account for 93 % of Australian insured losses (Schuster 2013). In addition, drought—often treated distinctly from other hazards due to its more gradual onset—can cause substantial reductions in agricultural productivity, and places stress on municipal and industrial water resources and natural ecosystems.Evidence is building that the frequency and cost of natural hazards are increasing both in Australia (Insurance Council of Australia 2013; Schuster 2013) and globally (Munich Re 2014). However, understanding the cause of these changes has proved to be difficult, with increases in reporting rates (Munich Re 2014), changes in societal exposure and vulnerability (Bouwer 2011; Neumayer and Barthel 2011) and anthropogenic climate change (IPCC 2013) all potentially playing a role in explaining the observed changes. Yet although the potential causes are many, correct attribution of the observed changes is necessary in order to identify appropriate policy responses, and to predict how the frequency and severity of natural hazards might change in the future.This Special Issue focuses on the specific role of large-scale climatic changes on the observed and future incidence of Australian natural hazards. The Special Issue is divided into seven papers, each covering a major class of climate-influenced natural hazard: floods, drought, storms (including wind and hail), coastal extremes, bushfires, heatwaves and frost. The work was initiated by the Working Group on Trends and Extremes from the Australian Water and Energy Exchanges (OzEWEX) initiative, which is a regional hydroclimate project run under the auspices of the Global Energy and Water Exchanges (GEWEX) initiative.

KW - climate change

KW - Australia

KW - natural harazrds

UR - https://link.springer.com/journal/10584

UR - http://www.scopus.com/inward/record.url?scp=84992151842&partnerID=8YFLogxK

U2 - 10.1007/s10584-016-1826-7

DO - 10.1007/s10584-016-1826-7

M3 - Editorial

VL - 139

SP - 1

EP - 19

JO - Climatic change

JF - Climatic change

SN - 0165-0009

IS - 1

ER -