Intercomparison study of NOx passive diffusion tubes with chemiluminescence analysers and evaluation of bias factors

Araceli Sánchez Jiménez, Mathew R. Heal, Iain J. Beverland

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

Passive diffusion tubes (PDTs) are an inexpensive and simple method to monitor air pollutants. Numerous studies have investigated the performance of PDTs for NO2 but little attention has been paid to PDTs for NOx. The aim of this study was to evaluate the performance of NOx PDTs in three different urban environments. Duplicate NOx and NO2 PDTs were co-located with chemiluminescence analysers at kerbside, urban centre and background sites in the city of Glasgow for twelve 1-week exposures. PDT measurements generally showed good temporal correlations with NOx and NO2 determined by the continuous analysers. However detailed evaluation showed PDT measurements were variously influenced by factors causing bias, according to individual site characteristics: positive bias in both NOx and NO2 PDTs due to wind-associated shortening of diffusion path; positive bias in NO2 PDTs due to within tube chemical reaction between NO and O3; and, where NO concentrations were high, negative bias in NOx PDTs assumed due to incomplete oxidation of NO by the in-cap oxidising granules. In conclusion, where ambient NOx is low (less than a few tens of mgm3), and PDTs are in sheltered locations, NOx PDTs should perform well over 1-week exposures; however substantial negative bias for NOx PDTs is expected in polluted roadside environments for exposures of several weeks as is usually the case in ambient air quality deployment. Observations from this study suggest that sheltering PDTs from high wind is important to minimise positive bias due to wind-associated shortening of the diffusion path.
LanguageEnglish
Pages3062-3068
Number of pages7
JournalAtmospheric Environment
Volume45
Issue number18
Early online date10 Mar 2011
DOIs
Publication statusPublished - 1 Jun 2011

Fingerprint

evaluation
roadside environment
chemical reaction
ambient air
air quality
oxidation
exposure
method
city
air pollutant

Keywords

  • nitrogen oxides
  • diffusion tubes
  • passive samplers
  • nitrogen oxides
  • air pollution monitoring

Cite this

@article{68b429da4d764764b7c428c4a9c63ca5,
title = "Intercomparison study of NOx passive diffusion tubes with chemiluminescence analysers and evaluation of bias factors",
abstract = "Passive diffusion tubes (PDTs) are an inexpensive and simple method to monitor air pollutants. Numerous studies have investigated the performance of PDTs for NO2 but little attention has been paid to PDTs for NOx. The aim of this study was to evaluate the performance of NOx PDTs in three different urban environments. Duplicate NOx and NO2 PDTs were co-located with chemiluminescence analysers at kerbside, urban centre and background sites in the city of Glasgow for twelve 1-week exposures. PDT measurements generally showed good temporal correlations with NOx and NO2 determined by the continuous analysers. However detailed evaluation showed PDT measurements were variously influenced by factors causing bias, according to individual site characteristics: positive bias in both NOx and NO2 PDTs due to wind-associated shortening of diffusion path; positive bias in NO2 PDTs due to within tube chemical reaction between NO and O3; and, where NO concentrations were high, negative bias in NOx PDTs assumed due to incomplete oxidation of NO by the in-cap oxidising granules. In conclusion, where ambient NOx is low (less than a few tens of mgm3), and PDTs are in sheltered locations, NOx PDTs should perform well over 1-week exposures; however substantial negative bias for NOx PDTs is expected in polluted roadside environments for exposures of several weeks as is usually the case in ambient air quality deployment. Observations from this study suggest that sheltering PDTs from high wind is important to minimise positive bias due to wind-associated shortening of the diffusion path.",
keywords = "nitrogen oxides , diffusion tubes, passive samplers, nitrogen oxides, air pollution monitoring",
author = "Jim{\'e}nez, {Araceli S{\'a}nchez} and Heal, {Mathew R.} and Beverland, {Iain J.}",
year = "2011",
month = "6",
day = "1",
doi = "10.1016/j.atmosenv.2011.03.011",
language = "English",
volume = "45",
pages = "3062--3068",
journal = "Atmospheric Environment",
issn = "1352-2310",
number = "18",

}

Intercomparison study of NOx passive diffusion tubes with chemiluminescence analysers and evaluation of bias factors. / Jiménez, Araceli Sánchez; Heal, Mathew R.; Beverland, Iain J.

In: Atmospheric Environment, Vol. 45, No. 18, 01.06.2011, p. 3062-3068.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Intercomparison study of NOx passive diffusion tubes with chemiluminescence analysers and evaluation of bias factors

AU - Jiménez, Araceli Sánchez

AU - Heal, Mathew R.

AU - Beverland, Iain J.

PY - 2011/6/1

Y1 - 2011/6/1

N2 - Passive diffusion tubes (PDTs) are an inexpensive and simple method to monitor air pollutants. Numerous studies have investigated the performance of PDTs for NO2 but little attention has been paid to PDTs for NOx. The aim of this study was to evaluate the performance of NOx PDTs in three different urban environments. Duplicate NOx and NO2 PDTs were co-located with chemiluminescence analysers at kerbside, urban centre and background sites in the city of Glasgow for twelve 1-week exposures. PDT measurements generally showed good temporal correlations with NOx and NO2 determined by the continuous analysers. However detailed evaluation showed PDT measurements were variously influenced by factors causing bias, according to individual site characteristics: positive bias in both NOx and NO2 PDTs due to wind-associated shortening of diffusion path; positive bias in NO2 PDTs due to within tube chemical reaction between NO and O3; and, where NO concentrations were high, negative bias in NOx PDTs assumed due to incomplete oxidation of NO by the in-cap oxidising granules. In conclusion, where ambient NOx is low (less than a few tens of mgm3), and PDTs are in sheltered locations, NOx PDTs should perform well over 1-week exposures; however substantial negative bias for NOx PDTs is expected in polluted roadside environments for exposures of several weeks as is usually the case in ambient air quality deployment. Observations from this study suggest that sheltering PDTs from high wind is important to minimise positive bias due to wind-associated shortening of the diffusion path.

AB - Passive diffusion tubes (PDTs) are an inexpensive and simple method to monitor air pollutants. Numerous studies have investigated the performance of PDTs for NO2 but little attention has been paid to PDTs for NOx. The aim of this study was to evaluate the performance of NOx PDTs in three different urban environments. Duplicate NOx and NO2 PDTs were co-located with chemiluminescence analysers at kerbside, urban centre and background sites in the city of Glasgow for twelve 1-week exposures. PDT measurements generally showed good temporal correlations with NOx and NO2 determined by the continuous analysers. However detailed evaluation showed PDT measurements were variously influenced by factors causing bias, according to individual site characteristics: positive bias in both NOx and NO2 PDTs due to wind-associated shortening of diffusion path; positive bias in NO2 PDTs due to within tube chemical reaction between NO and O3; and, where NO concentrations were high, negative bias in NOx PDTs assumed due to incomplete oxidation of NO by the in-cap oxidising granules. In conclusion, where ambient NOx is low (less than a few tens of mgm3), and PDTs are in sheltered locations, NOx PDTs should perform well over 1-week exposures; however substantial negative bias for NOx PDTs is expected in polluted roadside environments for exposures of several weeks as is usually the case in ambient air quality deployment. Observations from this study suggest that sheltering PDTs from high wind is important to minimise positive bias due to wind-associated shortening of the diffusion path.

KW - nitrogen oxides

KW - diffusion tubes

KW - passive samplers

KW - nitrogen oxides

KW - air pollution monitoring

UR - http://www.scopus.com/inward/record.url?scp=79955022117&partnerID=8YFLogxK

U2 - 10.1016/j.atmosenv.2011.03.011

DO - 10.1016/j.atmosenv.2011.03.011

M3 - Article

VL - 45

SP - 3062

EP - 3068

JO - Atmospheric Environment

T2 - Atmospheric Environment

JF - Atmospheric Environment

SN - 1352-2310

IS - 18

ER -