Interactions between vortex tubes and magnetic-flux rings at high kinetic and magnetic Reynolds numbers

Research output: Contribution to journalArticle

  • 1 Citations

Abstract

The interactions between vortex tubes and magnetic-flux rings in incompressible MHD are investigated at high kinetic and magnetic Reynolds numbers, and over a wide range of the interaction parameter. The latter is a measure of the turnover time of the large-scale fluid motions in units of the magnetic damping time, or of the strength of the Lorentz force in units of the inertial force. The small interaction parameter results, that are related to kinematic turbulent dynamo studies, indicate the evolution of magnetic-rings into flattened spirals wrapped around the vortex tubes. This process is also observed at intermediate interaction parameter values, only now the Lorentz force creates new vortical structures at the magnetic spiral edges, that have a striking solenoid vortex-line structure, and endow the flattened magnetic-spiral surfaces with a curvature. At high interaction parameter values, the decisive physical factor is Lorentz force effects. The latter create two (adjacent to the magnetic-ring) vortex rings, that reconnect with the vortex tube by forming an intriguing, serpentine-like, vortex-line structure, and generate, in turn, two new magnetic rings, adjacent to the initial one. In this regime, the morphologies of the vorticity and magnetic field structures are similar. The effects of these structures on kinetic and magnetic energy spectra, as well as on the direction of energy transfer between flow and magnetic fields are also indicated.
LanguageEnglish
Article number033701
Number of pages21
JournalPhysical Review Fluids
Volume3
Issue number3
DOIs
StatePublished - 13 Mar 2018

Fingerprint

Magnetic flux
Vortex flow
Reynolds number
Lorentz force
Kinetics
Magnetic fields
Solenoids
Magnetohydrodynamics
Vorticity
Energy transfer
Flow fields
Kinematics
Damping
Fluids

Keywords

  • turbulence
  • vortex dynamics
  • magnetic tubes

Cite this

@article{3f32d190dfd143adb45aafe89b7c24d2,
title = "Interactions between vortex tubes and magnetic-flux rings at high kinetic and magnetic Reynolds numbers",
abstract = "The interactions between vortex tubes and magnetic-flux rings in incompressible MHD are investigated at high kinetic and magnetic Reynolds numbers, and over a wide range of the interaction parameter. The latter is a measure of the turnover time of the large-scale fluid motions in units of the magnetic damping time, or of the strength of the Lorentz force in units of the inertial force. The small interaction parameter results, that are related to kinematic turbulent dynamo studies, indicate the evolution of magnetic-rings into flattened spirals wrapped around the vortex tubes. This process is also observed at intermediate interaction parameter values, only now the Lorentz force creates new vortical structures at the magnetic spiral edges, that have a striking solenoid vortex-line structure, and endow the flattened magnetic-spiral surfaces with a curvature. At high interaction parameter values, the decisive physical factor is Lorentz force effects. The latter create two (adjacent to the magnetic-ring) vortex rings, that reconnect with the vortex tube by forming an intriguing, serpentine-like, vortex-line structure, and generate, in turn, two new magnetic rings, adjacent to the initial one. In this regime, the morphologies of the vorticity and magnetic field structures are similar. The effects of these structures on kinetic and magnetic energy spectra, as well as on the direction of energy transfer between flow and magnetic fields are also indicated.",
keywords = "turbulence , vortex dynamics, magnetic tubes",
author = "Demosthenes Kivotides",
year = "2018",
month = "3",
day = "13",
doi = "10.1103/PhysRevFluids.3.033701",
language = "English",
volume = "3",
journal = "Physical Review Fluids",
issn = "2469-990X",
number = "3",

}

TY - JOUR

T1 - Interactions between vortex tubes and magnetic-flux rings at high kinetic and magnetic Reynolds numbers

AU - Kivotides,Demosthenes

PY - 2018/3/13

Y1 - 2018/3/13

N2 - The interactions between vortex tubes and magnetic-flux rings in incompressible MHD are investigated at high kinetic and magnetic Reynolds numbers, and over a wide range of the interaction parameter. The latter is a measure of the turnover time of the large-scale fluid motions in units of the magnetic damping time, or of the strength of the Lorentz force in units of the inertial force. The small interaction parameter results, that are related to kinematic turbulent dynamo studies, indicate the evolution of magnetic-rings into flattened spirals wrapped around the vortex tubes. This process is also observed at intermediate interaction parameter values, only now the Lorentz force creates new vortical structures at the magnetic spiral edges, that have a striking solenoid vortex-line structure, and endow the flattened magnetic-spiral surfaces with a curvature. At high interaction parameter values, the decisive physical factor is Lorentz force effects. The latter create two (adjacent to the magnetic-ring) vortex rings, that reconnect with the vortex tube by forming an intriguing, serpentine-like, vortex-line structure, and generate, in turn, two new magnetic rings, adjacent to the initial one. In this regime, the morphologies of the vorticity and magnetic field structures are similar. The effects of these structures on kinetic and magnetic energy spectra, as well as on the direction of energy transfer between flow and magnetic fields are also indicated.

AB - The interactions between vortex tubes and magnetic-flux rings in incompressible MHD are investigated at high kinetic and magnetic Reynolds numbers, and over a wide range of the interaction parameter. The latter is a measure of the turnover time of the large-scale fluid motions in units of the magnetic damping time, or of the strength of the Lorentz force in units of the inertial force. The small interaction parameter results, that are related to kinematic turbulent dynamo studies, indicate the evolution of magnetic-rings into flattened spirals wrapped around the vortex tubes. This process is also observed at intermediate interaction parameter values, only now the Lorentz force creates new vortical structures at the magnetic spiral edges, that have a striking solenoid vortex-line structure, and endow the flattened magnetic-spiral surfaces with a curvature. At high interaction parameter values, the decisive physical factor is Lorentz force effects. The latter create two (adjacent to the magnetic-ring) vortex rings, that reconnect with the vortex tube by forming an intriguing, serpentine-like, vortex-line structure, and generate, in turn, two new magnetic rings, adjacent to the initial one. In this regime, the morphologies of the vorticity and magnetic field structures are similar. The effects of these structures on kinetic and magnetic energy spectra, as well as on the direction of energy transfer between flow and magnetic fields are also indicated.

KW - turbulence

KW - vortex dynamics

KW - magnetic tubes

UR - https://journals.aps.org/prfluids/

U2 - 10.1103/PhysRevFluids.3.033701

DO - 10.1103/PhysRevFluids.3.033701

M3 - Article

VL - 3

JO - Physical Review Fluids

T2 - Physical Review Fluids

JF - Physical Review Fluids

SN - 2469-990X

IS - 3

M1 - 033701

ER -