Interaction of enteric bacterial pathogens with murine embryonic stem cells

J. Yu, R. Rossi, C. Hale, D. Goulding, G. Dougan

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

Embryonic stem (ES) cells are susceptible to genetic manipulation and retain the potential to differentiate into diverse cell types, which are factors that make them potentially attractive cells for studying host-pathogen interactions. Murine ES cells were found to be susceptible to invasion by Salmonella enterica serovar Typhimurium and Shigella flexneri and to the formation of attaching and effacing lesions by enteropathogenic Escherichia coli. S. enterica serovar Typhimurium and S. flexneri cell entry was dependent on the Salmonella pathogenicity island 1 and Shigella mxi/spa type III secretion systems, respectively. Microscopy studies indicated that both S. enterica serovar Typhimurium and S. flexneri were located in intracellular niches in ES cells that were similar to the niches occupied in differentiated cells. ES cells were eventually killed following bacterial invasion, but no evidence of activation of classical caspase-associated apoptotic or innate immune pathways was found. To demonstrate the potential of mutant ES cells, we employed an ES cell line defective in cholesterol synthesis and found that the mutant cells were less susceptible to infection by Salmonella and Shigella than the parental ES cells. Thus, we highlighted the practical use of genetically modified ES cells for studying microbe-host interactions.
Original languageEnglish
Pages (from-to)585-597
Number of pages13
JournalInfection and Immunity
Volume77
Issue number2
DOIs
Publication statusPublished - Feb 2009

    Fingerprint

Keywords

  • enteric bacterial pathogens
  • murine embryonic stem cells

Cite this