TY - JOUR
T1 - Integrated operational characteristic simulations of a ±100 kV/1 kA superconducting DC energy pipeline based on multi-physics field interaction
AU - Zhu, Jiahui
AU - Huang, Pengzhen
AU - Qiu, Ming
AU - Chen, Panpan
AU - Zhang, Hongjie
AU - Yang, Yanfang
AU - Ertekin, Ercan
N1 - © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
PY - 2023/8/31
Y1 - 2023/8/31
N2 - The DC superconducting energy pipeline (DC SEP) is a promising technology, which has the ability to transmit electricity and fossil energy such as liquefied natural gas (LNG) at the same pipeline so that LNG could serve as the refrigerant for the high-temperature superconducting (HTS) cables. The collaborative transportation of electricity and LNG increases the efficiency while lowering the cost. However, the operation performance of the SEP, which is crucial for HTS cables and LNG, is of greater complexity on account of multi-physics interactions. Herein, a ±100 kV/1 kA SEP model with electric, magnetic, fluid and thermal fields is established in COMSOL Multiphysics to analyze the temperature distribution of SEP via parametric scanning on SEP heat leakage and LNG flow rate. Finally, the relationship between temperature rise and LNG flow rate of a SEP has been estimated based on the interactions of the multi-physics fields. The results indicate that the temperature rises by 11.6 K for every kilometer of SEP. Moreover, the influences of heat leakage and LNG flow on temperature rise are revealed. Temperature rise increases proportionally with heat leakage and it decreases not monotonously with LNG flow rate. This study validates the feasibility of SEP and provides the theoretical references for the demonstration of SEP.
AB - The DC superconducting energy pipeline (DC SEP) is a promising technology, which has the ability to transmit electricity and fossil energy such as liquefied natural gas (LNG) at the same pipeline so that LNG could serve as the refrigerant for the high-temperature superconducting (HTS) cables. The collaborative transportation of electricity and LNG increases the efficiency while lowering the cost. However, the operation performance of the SEP, which is crucial for HTS cables and LNG, is of greater complexity on account of multi-physics interactions. Herein, a ±100 kV/1 kA SEP model with electric, magnetic, fluid and thermal fields is established in COMSOL Multiphysics to analyze the temperature distribution of SEP via parametric scanning on SEP heat leakage and LNG flow rate. Finally, the relationship between temperature rise and LNG flow rate of a SEP has been estimated based on the interactions of the multi-physics fields. The results indicate that the temperature rises by 11.6 K for every kilometer of SEP. Moreover, the influences of heat leakage and LNG flow on temperature rise are revealed. Temperature rise increases proportionally with heat leakage and it decreases not monotonously with LNG flow rate. This study validates the feasibility of SEP and provides the theoretical references for the demonstration of SEP.
KW - DC superconducting cable
KW - DC superconducting energy pipeline (DC SEP)
KW - liquified natural gas (LNG)
KW - multi-physics interaction simulation
U2 - 10.1109/tasc.2023.3239588
DO - 10.1109/tasc.2023.3239588
M3 - Article
SN - 1051-8223
VL - 35
JO - IEEE Transactions on Applied Superconductivity
JF - IEEE Transactions on Applied Superconductivity
IS - 5
M1 - 5400105
ER -