Instability and dynamics of two nonlinearly coupled intense laser beams in a quantum plasma

Yunliang Wang, Padma Shukla, Bengt Eliasson

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)
324 Downloads (Pure)

Abstract

We consider nonlinear interactions between two relativistically strong laser beams and a quantum plasma composed of degenerate electron fluids and immobile ions. The collective behavior of degenerate electrons is modeled by quantum hydrodynamic equations composed of the electron continuity, quantum electron momentum (QEM) equation, as well as the Poisson and Maxwell equations. The QEM equation accounts the quantum statistical electron pressure, the quantum electron recoil due to electron tunneling through the quantum Bohm potential, electron-exchange, and electron-correlation effects caused by electron spin, and relativistic ponderomotive forces (RPFs) of two circularly polarized electromagnetic (CPEM) beams. The dynamics of the latter are governed by nonlinear wave equations that include nonlinear currents arising from the relativistic electron mass increase in the CPEM wave fields, as well as from the beating of the electron quiver velocity and electron density variations reinforced by the RPFs of the two CPEM waves. Furthermore, nonlinear electron density variations associated with the driven (by the RPFs) quantum electron plasma oscillations obey a coupled nonlinear Schrödinger and Poisson equations. The nonlinearly coupled equations for our purposes are then used to obtain a general dispersion relation (GDR) for studying the parametric instabilities and the localization of CPEM wave packets in a quantum plasma. Numerical analyses of the GDR reveal that the growth rate of a fastest growing parametrically unstable mode is in agreement with the result that has been deduced from numerical simulations of the governing nonlinear equations. Explicit numerical results for two-dimensional (2D) localized CPEM wave packets at nanoscales are also presented. Possible applications of our investigation to intense laser-solid density compressed plasma experiments are highlighted.
Original languageEnglish
Article number013103
Number of pages6
JournalPhysics of Plasmas
Volume20
Issue number1
Early online date8 Jan 2013
DOIs
Publication statusPublished - 8 Jan 2013

Keywords

  • quantum plasma
  • laser
  • instability
  • intense laser beams

Fingerprint

Dive into the research topics of 'Instability and dynamics of two nonlinearly coupled intense laser beams in a quantum plasma'. Together they form a unique fingerprint.

Cite this