Influence of thermochemical modelling of CO2-N2 mixtures on the shock interaction patterns at hypersonic regimes

Catarina Garbacz, Fábio Morgado, Marco Fossati, James B. Scoggins, Thierry E. Magin, Michele Capriati

Research output: Chapter in Book/Report/Conference proceedingConference contribution book

8 Downloads (Pure)


The effect of finite-rate internal energy transfer on shock interaction mechanisms of CO2-dominated flows is investigated. The polyatomic molecule has a relatively low characteristic vibrational temperature that causes vibrational degrees of freedom to be excited across a shock wave at hypersonic regimes. In this paper, the impact of accounting for the time associated to the relaxation of this process, as opposed to assuming instant thermal equilibrium, on the shock structures occurring in the flowfield over a double-wedge geometry is numerically studied. A Mach 9 flow over two different geometries is simulated with two different models, the two-temperature model of Park and the thermally perfect gas model. Simulations are carried out with the SU2 software that is coupled to the Mutation++ library, providing thermodynamic, chemical kinetic and transport properties of any mixture of gases for a given state of the flow. Anisotropic mesh adaption is used with the AMG library to accurately capture highly directional and high-gradient localized flow features. Results show that different ways of modelling the effect of vibrational relaxation have a major impact on the size of the compression corner separation bubble, leading to different shock wave systems in this region. As a consequence, the obtained shock interaction mechanisms differ as well. The shock patterns obtained for the thermally perfect gas model result in stronger impingement on the surface and higher aerodynamic loads of pressure and heat flux.
Original languageEnglish
Title of host publicationAIAA Aviation 2021 Forum
Place of PublicationReston, VA
Number of pages16
ISBN (Electronic)9781624106101
Publication statusPublished - 2 Aug 2021
EventAIAA Aviation 2021 Virtual Event - Virtual, United States
Duration: 2 Aug 20216 Aug 2021


ConferenceAIAA Aviation 2021 Virtual Event
Abbreviated titleAIAA 2021
Country/TerritoryUnited States
Internet address


  • shock front
  • thermodynamic properties
  • universal gas constant
  • heat flux distribution
  • freestream conditions
  • nonequilibrium flows
  • vibrational energy
  • thermal nonequilibrium
  • oblique shock wave
  • conductivity coefficients


Dive into the research topics of 'Influence of thermochemical modelling of CO2-N2 mixtures on the shock interaction patterns at hypersonic regimes'. Together they form a unique fingerprint.

Cite this