Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance

David J.C. McKee, Malik Chami, Edouard Leymarie, Gueorgui Khomenko

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

Scattering phase functions derived from measured (volume-scattering meter, VSM) volume-scattering functions (VSFs) from Crimean coastal waters were found to have systematic differences in angular structure from Fournier-Forand (FF) functions with equivalent backscattering ratios. Hydrolight simulations demonstrated that differences in the angular structure of the VSF could result in variations in modeled subsurface radiance reflectances of up to ±20%. Furthermore, differences between VSM and FF simulated reflectances were found to be nonlinear as a function of scattering and could not be explained with the single-scattering approximation. Additional radiance transfer modeling demonstrated that the contribution of multiple scattering to radiance reflectance increased exponentially from a minimum of 16% for pure water to a maximum of ∼94% for turbid waters. Monte Carlo simulations demonstrated that multiple forward-scattering events were the dominant contributors to the generation of radiance reflectance signals for turbid waters and that angular structures in the shape of the VSF at forward angles could have a significant influence in determining reflectance signals for turbid waters.
Original languageEnglish
Pages (from-to)9210-9220
Number of pages10
JournalApplied Optics
Volume45
Issue number36
DOIs
Publication statusPublished - 20 Dec 2006

Keywords

  • volume-scattering function
  • multiple scattering
  • remote sensing reflectance
  • optics

Fingerprint Dive into the research topics of 'Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance'. Together they form a unique fingerprint.

  • Cite this