Abstract
This study investigated the influence of long-term wearing of unstable shoes (WUS) on compensatory postural adjustments (CPA) to an external perturbation.
Participants were divided into two groups: one wore unstable shoes while the other wore conventional shoes for 8 weeks. The ground reaction force signal was used to calculate the anterior-posterior (AP) displacement of the centre of pressure (CoP) and the electromyographic signal of gastrocnemius medialis (GM), tibialis anterior (TA), rectus femoris (RF) and biceps femoris (BF) muscles was used to assess individual muscle activity, antagonist co-activation and reciprocal activation at the joint (TA/GM and RF/(BF+GM) pairs) and muscle group levels (ventral (TA+RF)/dorsal (GM+BF) pair) within time intervals typical for CPA. The electromyographic signal was also used to assess muscle latency. The variables described were evaluated before and after the 8-week period while wearing the unstable shoes and barefoot.
Long-term WUS led to: an increase of BF activity in both conditions (barefoot and wearing the unstable shoes); a decrease of GM activity; an increase of antagonist co-activation and a decrease of reciprocal activation level at the TA/GM and ventral/dorsal pairs in the unstable shoe condition. Additionally, WUS led to a decrease in CoP displacement. However, no differences were observed in muscle onset and offset.
Results suggest that the prolonged use of unstable shoes leads to increased ankle and muscle groups' antagonist co-activation levels and higher performance by the postural control system.
Participants were divided into two groups: one wore unstable shoes while the other wore conventional shoes for 8 weeks. The ground reaction force signal was used to calculate the anterior-posterior (AP) displacement of the centre of pressure (CoP) and the electromyographic signal of gastrocnemius medialis (GM), tibialis anterior (TA), rectus femoris (RF) and biceps femoris (BF) muscles was used to assess individual muscle activity, antagonist co-activation and reciprocal activation at the joint (TA/GM and RF/(BF+GM) pairs) and muscle group levels (ventral (TA+RF)/dorsal (GM+BF) pair) within time intervals typical for CPA. The electromyographic signal was also used to assess muscle latency. The variables described were evaluated before and after the 8-week period while wearing the unstable shoes and barefoot.
Long-term WUS led to: an increase of BF activity in both conditions (barefoot and wearing the unstable shoes); a decrease of GM activity; an increase of antagonist co-activation and a decrease of reciprocal activation level at the TA/GM and ventral/dorsal pairs in the unstable shoe condition. Additionally, WUS led to a decrease in CoP displacement. However, no differences were observed in muscle onset and offset.
Results suggest that the prolonged use of unstable shoes leads to increased ankle and muscle groups' antagonist co-activation levels and higher performance by the postural control system.
Original language | English |
---|---|
Pages (from-to) | 98–104 |
Number of pages | 7 |
Journal | Gait and Posture |
Volume | 39 |
Issue number | 1 |
DOIs | |
Publication status | Published - 31 Jan 2014 |
Externally published | Yes |
Keywords
- postural control
- unstable shoe wearing
- adaptation
- electromyography