Impulsive breakdown of mineral oil and natural and synthetic ester liquids when containing varying levels of moisture

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)
619 Downloads (Pure)

Abstract

This article reports and discusses the results of impulse breakdown study of different insulating liquids under highly divergent electric field conditions. Samples of a natural ester (Envirotemp FR3), a synthetic ester (MIDEL 7131), and a naphthenic mineral oil (Shell Diala S4 ZX) at different levels of relative humidity were exposed to HV impulses with a nominal 7-\mu \text{s} rise time and 150-kV peak voltage of both positive and negative polarity. A strong dependence of the breakdown voltage and time to breakdown of the investigated dielectric liquids was observed with respect to the polarity of the applied HV impulses. It was shown that the FR3 natural ester liquid has a higher dielectric strength when exposed to positive impulse than when under negative impulse stress. The opposite breakdown behavior was observed for the synthetic ester MIDEL 7131 and the naphthenic oil Shell Diala S4 ZX which exhibited lower breakdown voltage under positive energization as compared with the negative energization. The breakdown voltage and prebreakdown time obtained in the present tests of the naphthenic oil, Shell Diala S4 ZX, lie between that of the ester liquids irrespective of impulse polarity. It has been established that no statistically significant variations exist in the breakdown parameters (breakdown voltage and time to breakdown) of the studied dielectric liquids as their relative humidity is increased under either impulse polarity. The obtained results will help in coordination of practical applications of low environmental impact dielectric fluids in power and pulsed power systems and components.

Original languageEnglish
Pages (from-to)466-475
Number of pages10
JournalIEEE Transactions on Plasma Science
Volume49
Issue number1
Early online date25 Dec 2020
DOIs
Publication statusPublished - 11 Jan 2021

Keywords

  • dielectric breakdown
  • dielectric liquids
  • divergent electric field
  • ester liquids
  • impulse breakdown
  • oil insulation
  • relative humidity

Fingerprint

Dive into the research topics of 'Impulsive breakdown of mineral oil and natural and synthetic ester liquids when containing varying levels of moisture'. Together they form a unique fingerprint.

Cite this