Improving the thermal stability of 1-3 piezoelectric composite transducers

A.C.S. Parr, R.L. O'Leary, G. Hayward

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)
69 Downloads (Pure)


The effect of temperature on the behavior of 1-3 piezoelectric composites manufactured using various polymeric materials was assessed experimentally through electrical impedance analysis and laser vibrometry. Device behavior varied with temperature irrespective of the polymer filler. Most significant changes in the piezoelectric composites were recorded around the glass transition temperature (T/sub g/) of the polymer; movement to lower fundamental resonant frequencies and higher values of electrical impedance minima were observed at higher temperatures. Decoupling of the pillars from the polymer matrix was observed by laser vibrometry at high temperatures. The use of high T/sub g/ polymer extended the operational temperature range of a piezoelectric composite, and a high T/sub g/ polymer with improved thermal conductivity also proved beneficial. For all devices, at temperatures very close to room temperature, subtle changes in device performance, linked to polymer softening were observed. Particulate-filled materials have been investigated, and it is recognized that the high viscosities and low mechanical damping of such materials could be problematic for piezoelectric composite manufacture. The thermal solver of the PZFlex finite element code has been used to predict the temporal and spatial temperature response of a selection of the devices presented. The simulated and experimental data compare favorably.
Original languageEnglish
Pages (from-to)550-563
Number of pages14
JournalIEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Issue number4
Publication statusPublished - 30 Apr 2005


  • finite element analysis
  • composites
  • piezoelectric materials
  • piezoelectric transducers


Dive into the research topics of 'Improving the thermal stability of 1-3 piezoelectric composite transducers'. Together they form a unique fingerprint.

Cite this