Improved visual inspection of advanced gas-cooled reactor fuel channels

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Visual inspection of fuel channels is important for assessing the health of the UK’s fleet of Advanced Gas-Cooled Reactor (AGR) power plants. For each fuel channel inspected, any defects found must be classified and assessed by a panel of experts and documented before the plant can return to service. Part of the current inspection process involves extracting relevant frames from visual inspection videos and manually assembling them to form a “crack montage” image. As the plants age, there is increasing pressure to inspect more fuel channels. Dealing with this increase in inspection demand requires new techniques to support the analysis of an increased volume of gathered video data so that crack montages can be made within the tight timescales of the outages. Recent work by the authors has created a technique for automatically processing inspection videos to extract the relevant frames and produce so called chanoramas from which any required defect montages can be cropped. Chanoramas are 360° panoramic images, which show the entire inside surface of the fuel channel inspected, and this provides completely a new way for plant operators to view their visual inspection data and analyse the condition of AGR fuel channels. In this paper we present an industrial case study which first introduces the concept of a chanorama and summarises some initial findings of testing the techniques used to create them. Then, based on the initial testing results, new and advanced image processing techniques which have been designed to improve the quality of the final chanoramas are presented. The paper then expands upon the use of the raw data and describes techniques for rendering it to allow 3D visualisations of the fuel channels which allow inspection engineers to view features of interest from a range of different angles.

LanguageEnglish
Article number012
Number of pages11
JournalInternational Journal of Prognostics and Health Management
Volume6
Issue numberSpecial Issue - Nuclear Energy
Publication statusPublished - 13 Jul 2015

Fingerprint

Gas cooled reactors
Inspection
Cracks
Defects
Testing
Outages
Power plants
Image processing
Visualization
Health
Engineers
Processing

Keywords

  • condition monitoring
  • visual inspection
  • lifetime extension
  • image processing

Cite this

@article{6a9a6b6581954f43890078e141e3bde1,
title = "Improved visual inspection of advanced gas-cooled reactor fuel channels",
abstract = "Visual inspection of fuel channels is important for assessing the health of the UK’s fleet of Advanced Gas-Cooled Reactor (AGR) power plants. For each fuel channel inspected, any defects found must be classified and assessed by a panel of experts and documented before the plant can return to service. Part of the current inspection process involves extracting relevant frames from visual inspection videos and manually assembling them to form a “crack montage” image. As the plants age, there is increasing pressure to inspect more fuel channels. Dealing with this increase in inspection demand requires new techniques to support the analysis of an increased volume of gathered video data so that crack montages can be made within the tight timescales of the outages. Recent work by the authors has created a technique for automatically processing inspection videos to extract the relevant frames and produce so called chanoramas from which any required defect montages can be cropped. Chanoramas are 360° panoramic images, which show the entire inside surface of the fuel channel inspected, and this provides completely a new way for plant operators to view their visual inspection data and analyse the condition of AGR fuel channels. In this paper we present an industrial case study which first introduces the concept of a chanorama and summarises some initial findings of testing the techniques used to create them. Then, based on the initial testing results, new and advanced image processing techniques which have been designed to improve the quality of the final chanoramas are presented. The paper then expands upon the use of the raw data and describes techniques for rendering it to allow 3D visualisations of the fuel channels which allow inspection engineers to view features of interest from a range of different angles.",
keywords = "condition monitoring, visual inspection, lifetime extension, image processing",
author = "Graeme West and Paul Murray and Stephen Marshall and Stephen McArthur",
year = "2015",
month = "7",
day = "13",
language = "English",
volume = "6",
journal = "International Journal of Prognostics and Health Management",
issn = "2153-2648",
number = "Special Issue - Nuclear Energy",

}

TY - JOUR

T1 - Improved visual inspection of advanced gas-cooled reactor fuel channels

AU - West, Graeme

AU - Murray, Paul

AU - Marshall, Stephen

AU - McArthur, Stephen

PY - 2015/7/13

Y1 - 2015/7/13

N2 - Visual inspection of fuel channels is important for assessing the health of the UK’s fleet of Advanced Gas-Cooled Reactor (AGR) power plants. For each fuel channel inspected, any defects found must be classified and assessed by a panel of experts and documented before the plant can return to service. Part of the current inspection process involves extracting relevant frames from visual inspection videos and manually assembling them to form a “crack montage” image. As the plants age, there is increasing pressure to inspect more fuel channels. Dealing with this increase in inspection demand requires new techniques to support the analysis of an increased volume of gathered video data so that crack montages can be made within the tight timescales of the outages. Recent work by the authors has created a technique for automatically processing inspection videos to extract the relevant frames and produce so called chanoramas from which any required defect montages can be cropped. Chanoramas are 360° panoramic images, which show the entire inside surface of the fuel channel inspected, and this provides completely a new way for plant operators to view their visual inspection data and analyse the condition of AGR fuel channels. In this paper we present an industrial case study which first introduces the concept of a chanorama and summarises some initial findings of testing the techniques used to create them. Then, based on the initial testing results, new and advanced image processing techniques which have been designed to improve the quality of the final chanoramas are presented. The paper then expands upon the use of the raw data and describes techniques for rendering it to allow 3D visualisations of the fuel channels which allow inspection engineers to view features of interest from a range of different angles.

AB - Visual inspection of fuel channels is important for assessing the health of the UK’s fleet of Advanced Gas-Cooled Reactor (AGR) power plants. For each fuel channel inspected, any defects found must be classified and assessed by a panel of experts and documented before the plant can return to service. Part of the current inspection process involves extracting relevant frames from visual inspection videos and manually assembling them to form a “crack montage” image. As the plants age, there is increasing pressure to inspect more fuel channels. Dealing with this increase in inspection demand requires new techniques to support the analysis of an increased volume of gathered video data so that crack montages can be made within the tight timescales of the outages. Recent work by the authors has created a technique for automatically processing inspection videos to extract the relevant frames and produce so called chanoramas from which any required defect montages can be cropped. Chanoramas are 360° panoramic images, which show the entire inside surface of the fuel channel inspected, and this provides completely a new way for plant operators to view their visual inspection data and analyse the condition of AGR fuel channels. In this paper we present an industrial case study which first introduces the concept of a chanorama and summarises some initial findings of testing the techniques used to create them. Then, based on the initial testing results, new and advanced image processing techniques which have been designed to improve the quality of the final chanoramas are presented. The paper then expands upon the use of the raw data and describes techniques for rendering it to allow 3D visualisations of the fuel channels which allow inspection engineers to view features of interest from a range of different angles.

KW - condition monitoring

KW - visual inspection

KW - lifetime extension

KW - image processing

UR - http://www.scopus.com/inward/record.url?scp=84936940842&partnerID=8YFLogxK

UR - http://www.phmsociety.org/node/1636

M3 - Article

VL - 6

JO - International Journal of Prognostics and Health Management

T2 - International Journal of Prognostics and Health Management

JF - International Journal of Prognostics and Health Management

SN - 2153-2648

IS - Special Issue - Nuclear Energy

M1 - 012

ER -