Improved analysis of GW150914 using a fully spin-precessing waveform model

B. P. Abbott, S. Jawahar, N. A. Lockerbie, K. V. Tokmakov, LIGO Scientific Collaboration, Virgo Collaboration

Research output: Contribution to journalArticle

37 Citations (Scopus)

Abstract

This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35+5−3 M⊙ and 30+3−4 M⊙ (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.
LanguageEnglish
Article number041014
Number of pages19
JournalPhysical Review X
Volume6
Issue number4
DOIs
Publication statusPublished - 21 Oct 2016

Fingerprint

waveforms
estimates
LIGO (observatory)
systematic errors
coalescing
relativity
alignment
formalism
intervals
simulation

Keywords

  • LIGO
  • gravitational wave detection
  • GW150914
  • effective-one-body
  • EOB
  • binary black holes
  • spin waveform model
  • gravitation

Cite this

LIGO Scientific Collaboration ; Virgo Collaboration. / Improved analysis of GW150914 using a fully spin-precessing waveform model. In: Physical Review X. 2016 ; Vol. 6, No. 4.
@article{3b6474d83e5a4c40a8c13b89a4df9e6b,
title = "Improved analysis of GW150914 using a fully spin-precessing waveform model",
abstract = "This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35+5−3 M⊙ and 30+3−4 M⊙ (where errors correspond to 90{\%} symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90{\%} probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.",
keywords = "LIGO, gravitational wave detection, GW150914, effective-one-body, EOB, binary black holes, spin waveform model, gravitation",
author = "Abbott, {B. P.} and S. Jawahar and Lockerbie, {N. A.} and Tokmakov, {K. V.} and {LIGO Scientific Collaboration} and {Virgo Collaboration}",
year = "2016",
month = "10",
day = "21",
doi = "10.1103/PhysRevX.6.041014",
language = "English",
volume = "6",
journal = "Physical Review X",
issn = "2160-3308",
number = "4",

}

Improved analysis of GW150914 using a fully spin-precessing waveform model. / LIGO Scientific Collaboration; Virgo Collaboration.

In: Physical Review X, Vol. 6, No. 4, 041014, 21.10.2016.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Improved analysis of GW150914 using a fully spin-precessing waveform model

AU - Abbott, B. P.

AU - Jawahar, S.

AU - Lockerbie, N. A.

AU - Tokmakov, K. V.

AU - LIGO Scientific Collaboration

AU - Virgo Collaboration

PY - 2016/10/21

Y1 - 2016/10/21

N2 - This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35+5−3 M⊙ and 30+3−4 M⊙ (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.

AB - This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35+5−3 M⊙ and 30+3−4 M⊙ (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.

KW - LIGO

KW - gravitational wave detection

KW - GW150914

KW - effective-one-body

KW - EOB

KW - binary black holes

KW - spin waveform model

KW - gravitation

U2 - 10.1103/PhysRevX.6.041014

DO - 10.1103/PhysRevX.6.041014

M3 - Article

VL - 6

JO - Physical Review X

T2 - Physical Review X

JF - Physical Review X

SN - 2160-3308

IS - 4

M1 - 041014

ER -